• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 45
  • 45
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Regulace a poruchy savčí cytochrom c oxidázy. / Regulation and Disorders of Mammalian Cytochrome c Oxidase

Kovářová, Nikola January 2016 (has links)
Cytochrome c oxidase (COX) represents the terminal enzyme complex of respiratory chain metabolic pathway and it occurs as monomer, dimer or as a part of respiratory supercomplexes in the inner mitochondrial membrane. COX assembly process is complicated, highly regulated and depends on many ancillary proteins. Mutations in COX subunits, which are encoded by mitochondrial and nuclear DNA, or in genes encoding its assembly proteins are frequent cause of very severe mitochondrial disorders. SURF1 assembly protein participates in the first steps of COX assembly, but its exact function is not yet clarified. In humans, mutations of SURF1 gene lead to severe COX defect and fatal neurodegenerative disorder, Leigh syndrome. Knockout of SURF1 gene in mouse causes isolated COX defect as well, but less pronounced and without involvement of CNS. The aim of the thesis was detailed analysis of disturbed COX biogenesis in a condition of SURF1 gene mutations or SURF1 gene knockout, from assembly of COX monomer to interaction of COX into supercomplexes, and to the impact of isolated COX defect on other OXPHOS complexes. Mutations of SURF1 gene in patient's fibroblasts led to marked accumulation of COX assembly intermediates and to a defect in formation of functional COX monomer, which was preferentially built into an...
42

Defective IL-23/IL-17 Axis Protects p47phox−/− Mice from Colon Cancer

Richter, Cornelia, Herrero San Juan, Martina, Weigmann, Benno, Bergis, Dominik, Dauber, Katrin, Muder, Michael H., Baretton, Gustavo B., Pfeilschifter, Josef Martin, Bonig, Halvard, Brenner, Sebastian, Radeke, Heinfried H. 19 July 2017 (has links) (PDF)
In the colon, a sophisticated balance between immune reaction and tolerance is absolutely required. Dysfunction may lead to pathologic phenotypes ranging from chronic inflammatory processes to cancer development. Two prominent modulators of colon inflammation are represented by the closely related cytokines interleukin (IL)-12 and IL-23, which initiate adaptive Th1 and Th17 immune responses, respectively. In this study, we investigated the impact of the NADPH oxidase protein p47phox, which negatively regulates IL-12 in dendritic cells, on colon cancer development in a colitis-associated colon cancer model. Initially, we found that IL-12−/− mice developed less severe colitis but are highly susceptible to colon cancer. By contrast, p47phox−/− mice showed lower tumor scores and fewer high grade tumors than wild-type (WT) littermates. Treatment with toll-like receptor 9 ligand CpG2216 significantly enhanced colitis in p47phox−/− mice, whereas tumor growth was simultaneously reduced. In tumor tissue of p47phox−/− mice, the IL-23/IL-17 axis was crucially hampered. IL-23p19 protein expression in tumor tissue correlated with tumor stage. Reconstitution of WT mice with IL-23p19−/− bone marrow protected these mice from colon cancer, whereas transplantation of WT hematopoiesis into IL-23p19−/− mice increased the susceptibility to tumor growth. Our study strengthens the divergent role of IL-12 and IL-23 in colon cancer development. With the characterization of p47phox as a novel modulator of both cytokines our investigation introduces a promising new target for antitumor strategies.
43

Defective IL-23/IL-17 Axis Protects p47phox−/− Mice from Colon Cancer

Richter, Cornelia, Herrero San Juan, Martina, Weigmann, Benno, Bergis, Dominik, Dauber, Katrin, Muder, Michael H., Baretton, Gustavo B., Pfeilschifter, Josef Martin, Bonig, Halvard, Brenner, Sebastian, Radeke, Heinfried H. 19 July 2017 (has links)
In the colon, a sophisticated balance between immune reaction and tolerance is absolutely required. Dysfunction may lead to pathologic phenotypes ranging from chronic inflammatory processes to cancer development. Two prominent modulators of colon inflammation are represented by the closely related cytokines interleukin (IL)-12 and IL-23, which initiate adaptive Th1 and Th17 immune responses, respectively. In this study, we investigated the impact of the NADPH oxidase protein p47phox, which negatively regulates IL-12 in dendritic cells, on colon cancer development in a colitis-associated colon cancer model. Initially, we found that IL-12−/− mice developed less severe colitis but are highly susceptible to colon cancer. By contrast, p47phox−/− mice showed lower tumor scores and fewer high grade tumors than wild-type (WT) littermates. Treatment with toll-like receptor 9 ligand CpG2216 significantly enhanced colitis in p47phox−/− mice, whereas tumor growth was simultaneously reduced. In tumor tissue of p47phox−/− mice, the IL-23/IL-17 axis was crucially hampered. IL-23p19 protein expression in tumor tissue correlated with tumor stage. Reconstitution of WT mice with IL-23p19−/− bone marrow protected these mice from colon cancer, whereas transplantation of WT hematopoiesis into IL-23p19−/− mice increased the susceptibility to tumor growth. Our study strengthens the divergent role of IL-12 and IL-23 in colon cancer development. With the characterization of p47phox as a novel modulator of both cytokines our investigation introduces a promising new target for antitumor strategies.
44

Novel Intrinsic and Extrinsic Approaches to Selectively Regulate Glycosphingolipid Metabolism

Kamani, Mustafa 08 August 2013 (has links)
Glycosphingolipid (GSL) metabolism is a complex process involving proteins and enzymes at distinct locations within the cell. Mammalian GSLs are typically based on glucose or galactose, forming glucosylceramide (GlcCer) and galactosylceramide (GalCer). Most GSLs are derived from GlcCer, which is synthesized on the cytosolic leaflet of the Golgi, while all subsequent GSLs are synthesized on the lumenal side. We have utilized both pharamacological and genetic manipulation approaches to selectively regulate GSL metabolism and better understand its mechanistic details. We have developed analogues of GlcCer and GalCer by substituting the fatty acid moiety with an adamanatane frame. The resulting adamantylGSLs are more water-soluble than their natural counterparts. These analogues selectively interfere with GSL metabolism at particular points within the metabolic pathway. At 40 µM, adaGlcCer prevents synthesis of all GSLs downstream of GlcCer, while also elevating GlcCer levels, by inhibiting lactosylceramide (LacCer) synthase and glucocerebrosidase, respectively. AdaGalCer specifically reduces synthesis of globotriaosylceramide (Gb3) and downstream globo-series GSLs. AdaGalCer also increases Gaucher disease N370S glucocerebrosidase expression, lysosomal localization and activity. AdaGSLs, therefore, have potential as novel therapeutic agents in diseases characterized by GSL anomalies and as tools to study the effects of GSL modulation. Two predominant theories have been developed to explain how GlcCer accesses the Golgi lumen: one involving direct translocation from the cytosolic-to-lumenal leaflet of the Golgi by the ABC transporter P-glycoprotein (P-gp, ABCB1, MDR1), and the other involving retrograde transport of GlcCer by FAPP2 to the ER, followed by entry into the vesicular transport system for Golgi lumenal access. To examine the in vivo involvement of P-gp in GSL metabolism, we generated a knockout model by crossbreeding the Fabry disease mouse with the P-gp knockout mouse. HPLC analyses of tissue Gb3 levels revealed a tissue-specific reduction in MDR1/Fabry mice. TLC analyses, however, did not show such reduction. In addition, we performed a gene knockdown study using siRNA against P-gp and FAPP2. Results show these siRNA to have distinct effects on GSL levels that are cell-type specific. These results give rise to the prospect of unique therapeutic approaches by targeting P-gp or FAPP2 for synthesis inhibition of particular GSL pathways.
45

Novel Intrinsic and Extrinsic Approaches to Selectively Regulate Glycosphingolipid Metabolism

Kamani, Mustafa 08 August 2013 (has links)
Glycosphingolipid (GSL) metabolism is a complex process involving proteins and enzymes at distinct locations within the cell. Mammalian GSLs are typically based on glucose or galactose, forming glucosylceramide (GlcCer) and galactosylceramide (GalCer). Most GSLs are derived from GlcCer, which is synthesized on the cytosolic leaflet of the Golgi, while all subsequent GSLs are synthesized on the lumenal side. We have utilized both pharamacological and genetic manipulation approaches to selectively regulate GSL metabolism and better understand its mechanistic details. We have developed analogues of GlcCer and GalCer by substituting the fatty acid moiety with an adamanatane frame. The resulting adamantylGSLs are more water-soluble than their natural counterparts. These analogues selectively interfere with GSL metabolism at particular points within the metabolic pathway. At 40 µM, adaGlcCer prevents synthesis of all GSLs downstream of GlcCer, while also elevating GlcCer levels, by inhibiting lactosylceramide (LacCer) synthase and glucocerebrosidase, respectively. AdaGalCer specifically reduces synthesis of globotriaosylceramide (Gb3) and downstream globo-series GSLs. AdaGalCer also increases Gaucher disease N370S glucocerebrosidase expression, lysosomal localization and activity. AdaGSLs, therefore, have potential as novel therapeutic agents in diseases characterized by GSL anomalies and as tools to study the effects of GSL modulation. Two predominant theories have been developed to explain how GlcCer accesses the Golgi lumen: one involving direct translocation from the cytosolic-to-lumenal leaflet of the Golgi by the ABC transporter P-glycoprotein (P-gp, ABCB1, MDR1), and the other involving retrograde transport of GlcCer by FAPP2 to the ER, followed by entry into the vesicular transport system for Golgi lumenal access. To examine the in vivo involvement of P-gp in GSL metabolism, we generated a knockout model by crossbreeding the Fabry disease mouse with the P-gp knockout mouse. HPLC analyses of tissue Gb3 levels revealed a tissue-specific reduction in MDR1/Fabry mice. TLC analyses, however, did not show such reduction. In addition, we performed a gene knockdown study using siRNA against P-gp and FAPP2. Results show these siRNA to have distinct effects on GSL levels that are cell-type specific. These results give rise to the prospect of unique therapeutic approaches by targeting P-gp or FAPP2 for synthesis inhibition of particular GSL pathways.

Page generated in 0.0469 seconds