• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 11
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sustainable carbon materials from hydrothermal processes

Titirici, Maria-Magdalena January 2013 (has links)
The world’s appetite for energy is producing growing quantities of CO2, a pollutant that contributes to the warming of the planet and which currently cannot be removed or stored in any significant way. Other natural reserves are also being devoured at alarming rates and current assessments suggest that we will need to identify alternative sources in the near future. With the aid of materials chemistry it should be possible to create a world in which energy use needs not be limited and where usable energy can be produced and stored wherever it is needed, where we can minimize and remediate emissions as new consumer products are created, whilst healing the planet and preventing further disruptive and harmful depletion of valuable mineral assets. In achieving these aims, the creation of new and very importantly greener industries and new sustainable pathways are crucial. In all of the aforementioned applications, new materials based on carbon, ideally produced via inexpensive, low energy consumption methods, using renewable resources as precursors, with flexible morphologies, pore structures and functionalities, are increasingly viewed as ideal candidates to fulfill these goals. The resulting materials should be a feasible solution for the efficient storage of energy and gases. At the end of life, such materials ideally must act to improve soil quality and to act as potential CO2 storage sinks. This is exactly the subject of this habilitation thesis: an alternative technology to produce carbon materials from biomass in water using low carbonisation temperatures and self-generated pressures. This technology is called hydrothermal carbonisation. It has been developed during the past five years by a group of young and talented researchers working under the supervision of Dr. Titirici at the Max-Planck Institute of Colloids and Interfaces and it is now a well-recognised methodology to produce carbon materials with important application in our daily lives. These applications include electrodes for portable electronic devices, filters for water purification, catalysts for the production of important chemicals as well as drug delivery systems and sensors. / Der stets wachsende globale Energiebedarf führt zu immer weiter zunehmenden Emissionen von Kohlenstoffdioxid, einem umweltschädlichen Gas, das als eines der Hauptprobleme im weltweiten Klimawandel darstellt. Bislang ist es jedoch nicht möglich, dieses Kohlenstoffdioxid in sinnvoller Weise zu verwerten oder einzulagern. Zudem existieren weitere Probleme in der globalen Energieversorgung, da viele natürlich vorkommende Rohstoffe sehr schnell ausgebeutet werden, so dass in naher Zukunft dringend alternative Energiequellen gefunden werden müssen, um den aktuellen Problemen zu begegnen. Der Wissenschaftszweig der Materialchemie zielt in diesem Zusammenhang darauf ab, dazu beizutragen, die bestehende Energieinfrastruktur nachhaltig zu verändern. Dabei stehen verschiedene Aspekte im Vordergrund: Energie sollte in allen gewünschten Mengen jederzeit verfügbar und auch speicherbar sein. Zudem sollte ihre Erzeugung ohne umweltschädliche Abfallprodukte ablaufen. Tiefgreifende Eingriffe in die Umwelt, v.a. durch den übermäßigen Abbau von Rohstoffen, sollte nicht mehr erforderlich sein. Auf diese Weise können die Folgen des bisherigen Klimawandels eingedämmt werden und neue Schäden an der Umwelt vermieden werden. Neue, grüne Industrie- und Energieprozesse schützen hier also nachhaltig den Planeten. Bei der Forschung an nachhaltigen Formen der Energieversorgung beschäftigen sich Materialchemiker in mannigfaltiger Weise mit Kohlenstoffmaterialien. Diese sollten idealerweise kostengünstig und ohne hohen Energiebedarf produziert werden können. Am vielversprechendsten sind Materialien, die eine flexibel gestaltbare Morphologie besitzen, d.h. die besondere strukturelle Eigenschaften besitzen, wie z.B. Porosität oder chemisch veränderte und damit funktionale Oberflächen. Idealerweise sollten solche neu entwickelten Materialien nicht nur als Speicher von Energie oder Energieträgern dienen, sondern auch nach ihrer Lebensdauer als funktionales Material zur Verbesserung der Bodenqualität eingesetzt werden können und dort noch weiter als potentielle Senke für Kohlenstoffdioxid dienen können. Die zuvor beschriebenen Themen und Probleme stellen den Gegenstand der vorliegenden Habilitationsschrift dar: die Entwicklung einer alternativen Methode zur Herstellung von Kohlenstoffmaterialien aus Biomasse in Wasser bei geringen Temperaturen. Dabei handelt es sich um die sogenannte hydrothermale Karbonisierung, die in den letzten fünf Jahren von einer Gruppe junger, talentierter Wissenschaftler unter der Anleitung von Frau Dr. Titirici am Max-Planck-Institut für Kolloid- und Grenzflächenforschung erarbeitet und weiterentwickelt wurde zu einer heutzutage anerkannten und verbreiteten Methode. Zudem wurden die über diesen Weg gewonnenen Materialien erfolgreich in zahlreichen, für den Alltag wichtigen Anwendungen eingesetzt, so z.B. als Elektroden in tragbaren elektronischen Geräten, als Filtermaterialien für die Aufreinigung kontaminierten Wassers, als Katalysatoren für wichtige chemische Reaktionen, als Trägermaterial für Arzneimittel und als Sensoren.
2

Tailoring Pore Size and Polarity for Liquid Phase Adsorption by Porous Carbons

Hippauf, Felix 29 May 2017 (has links) (PDF)
Adsorption is a versatile purification technique to selectively separate different peptide fractions from a mixture using mild operation conditions. Porous carbons are ideally suited to separate ACE-inhibiting dipeptides by combining tailored size exclusion and polarity selectivity. The desired peptide fraction is mostly hydrophobic and very small and should adsorb inside hydrophobic micropores. The second topic of this thesis is linked to energy storage. The lithium-sulfur battery is a promising alternative to common lithium-ion batteries with theoretical capacities of up to 1672 mAh g−1 sulfur. The second aim of this thesis is to conduct an in-depth investigation of polysulfides interacting with selected carbon materials in a simplified battery electrolyte environment. The focus of this study is laid on the impact of surface polarity and pore size distribution of the carbon to develop a quantitative correlation between polysulfide retention and porosity metrics. Both, the enrichment of ACE-inhibitors and the retention of polysulfides rely on liquid phase adsorption in porous materials, linking the above mentioned topics. This thesis not only aims to develop an enrichment process or to find a superior battery cathode but also strives to explore structure-property relationships that are universally valid. Understanding the complex interplay of pore size and polarity leading to selective interactions between pore wall and the adsorbed species is given a high priority.
3

Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage

Zhu, Jinhui, Yang, Jun, Miao, Rongrong, Zhaoquan, Zhaoquan, Zhuang , Xiaodong, Feng, Xinliang 17 July 2017 (has links) (PDF)
Nitrogen-doped (N-doped) porous carbons have drawn increasing attention due to their high activity for electrochemical catalysis, and high capacity for lithium-ion (Li-ion) batteries and supercapacitors. So far, the controlled synthesis of N-enriched ordered mesoporous carbons (N-OMCs) for Li-ion batteries is rarely reported due to the lack of a reliable nitrogen-doping protocol that maintains the ordered mesoporous structure. In order to realize this, in this work, ordered mesoporous carbons with controllable N contents were successfully prepared by using melamine, F127 and phenolic resin as the N-source, template and carbon-source respectively via a solvent-free ball-milling method. The as-prepared N-OMCs which showed a high N content up to 31.7 wt% were used as anodes for Li-ion batteries. Remarkably, the N-OMCs with an N content of 24.4 wt% exhibit the highest reversible capacity (506 mA h g−1) even after 300 cycles at 300 mA g−1 and a capacity retention of 103.3%. N-OMCs were also used as electrode materials in supercapacitors and a capacity of 150 F g−1 at 0.2 A g−1 with stable cycling up to 2500 times at 1 A g−1 was achieved. These attractive results encourage the design and synthesis of high heteroatom content ordered porous carbons for applications in the field of energy storage and conversion.
4

Monolithic In-Plane Integration of Gate-Modulated Switchable Supercapacitors

Bräuniger, Yannik, Lochmann, Stefanie, Gellrich, Christin, Galle, Lydia, Grothe, Julia, Kaskel, Stefan 22 February 2024 (has links)
Monolithic integration of iontronic devices is a key challenge for future miniaturization and system integration. The G-Cap, a novel iontronic element, is a switchable supercapacitor with gating characteristics comparable to transistors in electronic circuits, but switching relies on ionic currents and ion electroadsorption. The first monolithic in-plane G-Cap integration through 3D-inkjet printing of nanoporous carbon precursors is reported. The printed G-Cap has a three-electrode architecture integrating a symmetric “working” supercapacitor (W-Cap) and a third “gate” electrode (G-electrode) that reversibly depletes/injects electrolyte ions into the system, effectively controlling the “working” capacitance. The symmetric W-Cap operates with a proton-conducting hydrogel electrolyte PVA/H₂SO₄ and shows a high capacitance (1.6 mF cm⁻²) that can be switched “on” and “off” by applying a DC bias potential (-1.0 V) at the G-electrode. This effectively suppresses AC electroadsorption in the nanoporous carbon electrodes of the W-Cap, resulting in a high capacitance drop from an “on” to an “off” state. The new monolithic structures achieve high rate performance, reversible on-off switching with an off-value reaching 0.5 %, which even surpasses recently reported values. Establishing technologies and device architectures for functional ionic electroadsorption devices is crucial for diverse fields ranging from microelectronics and iontronics to biointerfacing and neuromodulation.
5

Resin and carbon foam production by cationic step-growth polymerization of organic carbonates

Wöckel, L., Seifert, A., Mende, C., Roth-Panke, I., Kroll, L., Spange, S. 06 March 2017 (has links) (PDF)
Acid induced step-growth polymerizations of bis(p-methoxybenzyl) carbonate (pMBC), bis(m-methoxybenzyl) carbonate (mMBC) and difurfuryl carbonate (DFC) have been performed to produce resin-foams, because controlled release of carbon dioxide takes place during polymerization of those organic carbonates. The monomers are polymerized in bulk using p-toluene sulfonic acid (pTS) as a catalyst. The volume development of the foams is assisted by use of an appropriate surfactant and the crosslinking agent 1,3,5-trioxane as co-components. A portion of carbon dioxide release is a function of the carbenium stability of the reactive intermediate derived from the monomer; DFC > pMBC ≫ mMBC. Resins derived from mMBC can be post-treated to release carbon dioxide after polymerization. The molecular structures of the resulting materials are investigated by solid state 13C-NMR spectroscopy and IR spectroscopy. Scanning electron microscopy was used to study foam morphology. The carbon dioxide release was monitored with TG-MS analysis. Finally, the polymer foams have been converted into carbon foams and investigated by means of mercury porosimetry. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
6

Salts as highly diverse porogens : functional ionic liquid-derived carbons and carbon-based composites for energy-related applications

Fechler, Nina January 2012 (has links)
The present thesis is to be brought into line with the current need for alternative and sustainable approaches toward energy management and materials design. In this context, carbon in particular has become the material of choice in many fields such as energy conversion and storage. Herein, three main topics are covered: 1)An alternative synthesis strategy toward highly porous functional carbons with tunable porosity using ordinary salts as porogen (denoted as “salt templating”) 2)The one-pot synthesis of porous metal nitride containing functional carbon composites 3)The combination of both approaches, enabling the generation of highly porous composites with finely tunable properties All approaches have in common that they are based on the utilization of ionic liquids, salts which are liquid below 100 °C, as precursors. Just recently, ionic liquids were shown to be versatile precursors for the generation of heteroatom-doped carbons since the liquid state and a negligible vapor pressure are highly advantageous properties. However, in most cases the products do not possess any porosity which is essential for many applications. In the first part, “salt templating”, the utilization of salts as diverse and sustainable porogens, is introduced. Exemplarily shown for ionic liquid derived nitrogen- and nitrogen-boron-co-doped carbons, the control of the porosity and morphology on the nanometer scale by salt templating is presented. The studies within this thesis were conducted with the ionic liquids 1-Butyl-3-methyl-pyridinium dicyanamide (Bmp-dca), 1-Ethyl-3-methyl-imidazolium dicyanamide (Emim-dca) and 1 Ethyl 3-methyl-imidazolium tetracyanoborate (Emim-tcb). The materials are generated through thermal treatment of precursor mixtures containing one of the ionic liquids and a porogen salt. By simple removal of the non-carbonizable template salt with water, functional graphitic carbons with pore sizes ranging from micro- to mesoporous and surface areas up to 2000 m2g-1 are obtained. The carbon morphologies, which presumably originate from different onsets of demixing, mainly depend on the nature of the porogen salt whereas the nature of the ionic liquid plays a minor role. Thus, a structural effect of the porogen salt rather than activation can be assumed. This offers an alternative to conventional activation and templating methods, enabling to avoid multiple-step and energy-consuming synthesis pathways as well as employment of hazardous chemicals for the template removal. The composition of the carbons can be altered via the heat-treatment procedure, thus at lower synthesis temperatures rather polymeric carbonaceous materials with a high degree of functional groups and high surface areas are accessible. First results suggest the suitability of the materials for CO2 utilization. In order to further illustrate the potential of ionic liquids as carbon precursors and to expand the class of carbons which can be obtained, the ionic liquid 1-Ethyl-3-methyl-imidazolium thiocyanate (Emim-scn) is introduced for the generation of nitrogen-sulfur-co-doped carbons in combination with the already studied ionic liquids Bmp-dca and Emim-dca. Here, the salt templating approach should also be applicable eventually further illustrating the potential of salt templating, too. In the second part, a one-pot and template-free synthesis approach toward inherently porous metal nitride nanoparticle containing nitrogen-doped carbon composites is presented. Since ionic liquids also offer outstanding solubility properties, the materials can be generated through the carbonization of homogeneous solutions of an ionic liquid acting as nitrogen as well as carbon source and the respective metal precursor. The metal content and surface area are easily tunable via the initial metal precursor amount. Furthermore, it is also possible to synthesize composites with ternary nitride nanoparticles whose composition is adjustable by the metal ratio in the precursor solution. Finally, both approaches are combined into salt templating of the one-pot composites. This opens the way to the one-step synthesis of composites with tunable composition, particle size as well as precisely controllable porosity and morphology. Thereby, common synthesis strategies where the product composition is often negatively affected by the template removal procedure can be avoided. The composites are further shown to be suitable as electrodes for supercapacitors. Here, different properties such as porosity, metal content and particle size are investigated and discussed with respect to their influence on the energy storage performance. Because a variety of ionic liquids, metal precursors and salts can be combined and a simple closed-loop process including salt recycling is imaginable, the approaches present a promising platform toward sustainable materials design. / Die vorliegende Arbeit basiert auf der Notwendigkeit für eine alternative und nachhaltige Energiewirtschaft sowie alternativer Herstellungsmethoden der damit verbundenen Materialien. Hierbei kommt besonders Kohlenstoffen und kohlenstoffbasierten Systemen eine hohe Bedeutung zu. Im Rahmen der Dissertation wurden drei Ansätze verfolgt, die zu der Entwicklung alternativer Strategien zur Herstellung poröser Heteroatom-enthaltender Kohlenstoffe und deren Komposite beitragen. Die Materialien wurden des Weiteren für die CO2 Nutzung sowie Energiespeicherung in Form von Superkondensatoren getestet. Allen Materialien ist gemeinsam, dass sie ausgehend von ionischen Flüssigkeiten, Salze mit einem Schmelzpunkt unterhalb von 100 °C, als Kohlenstoffvorstufe durch Hochtemperaturverfahren hergestellt wurden. Im ersten Teil wird ein alternatives und nachhaltiges Verfahren zur Herstellung hochporöser Stickstoff und Stickstoff-Bor-haltiger Kohlenstoffe vorgestellt. Bei dieser als „Salztemplatierung“ bezeichneten Methode werden herkömmliche Salze als Porogen verwendet. Damit sind sehr hohe Oberflächen erreichbar, die neben der Porengröße und dem Porenvolumen durch die Variation der Salzspezies und Salzmenge einstellbar sind. Dies bietet gegenüber herkömmlichen Templatierungsverfahren den Vorteil, dass das Salz nach erfolgter Karbonisierung der ionischen Flüssigkeit in Anwesenheit der nicht karbonisierbaren Salzspezies einfach mit Wasser auswaschbar ist. Hierbei ist ein Recyclingprozess denkbar. Bei hohen Synthesetemperaturen werden graphitische, bei niedrigen hochfunktionalisierte, polymerartige Produkte erhalten. Letztere erwiesen sich als vielversprechende Materialien für die CO2 Nutzung. Unter Verwendung einer bisher nicht eingesetzten ionische Flüssigkeit konnte weiterhin die Einführung von Schwefel als Heteroatom ermöglicht werden. Im zweiten Teil wird eine Templat-freie Einschrittsynthese von porösen Kompositen aus Metallnitrid Nanopartikeln und Stickstoff-dotiertem Kohlenstoff vorgestellt. Die Materialien werden ausgehend von einer Lösung aus einer ionischen Flüssigkeit und einem Metallvorläufer hergestellt, wobei die ionische Flüssigkeit sowohl als Kohlenstoffvorläufer als auch als Stickstoffquelle für die Metallnitride dient. Der Metallgehalt, das Metallverhältnis in ternären Nitriden und die Oberfläche sind über den Anteil des Metallvorläufers einstellbar. Schließlich werden beide Ansätze zur Salztemplatierung von den Kompositen kombiniert. Dadurch wird die Einschrittsynthese von Kompositen mit einstellbarer Oberfläche, Zusammensetzung, Partikelgröße und Morphologie ermöglicht. Diese Materialien wurden schließlich als Elektroden für Superkondensatoren getestet und der Einfluss verschiedener Parameter auf die Leistungsfähigkeit untersucht. Aufgrund verschiedener Kombinationsmöglichkeiten von ionischen Flüssigkeiten, Metallvorläufern und Salzen, stellen die hier präsentierten Ansätze eine vielversprechende Plattform für die nachhaltige Materialsynthese dar.
7

Nitrogen-enriched, ordered mesoporous carbons for potential electrochemical energy storage

Zhu, Jinhui, Yang, Jun, Miao, Rongrong, Zhaoquan, Zhaoquan, Zhuang, Xiaodong, Feng, Xinliang 17 July 2017 (has links)
Nitrogen-doped (N-doped) porous carbons have drawn increasing attention due to their high activity for electrochemical catalysis, and high capacity for lithium-ion (Li-ion) batteries and supercapacitors. So far, the controlled synthesis of N-enriched ordered mesoporous carbons (N-OMCs) for Li-ion batteries is rarely reported due to the lack of a reliable nitrogen-doping protocol that maintains the ordered mesoporous structure. In order to realize this, in this work, ordered mesoporous carbons with controllable N contents were successfully prepared by using melamine, F127 and phenolic resin as the N-source, template and carbon-source respectively via a solvent-free ball-milling method. The as-prepared N-OMCs which showed a high N content up to 31.7 wt% were used as anodes for Li-ion batteries. Remarkably, the N-OMCs with an N content of 24.4 wt% exhibit the highest reversible capacity (506 mA h g−1) even after 300 cycles at 300 mA g−1 and a capacity retention of 103.3%. N-OMCs were also used as electrode materials in supercapacitors and a capacity of 150 F g−1 at 0.2 A g−1 with stable cycling up to 2500 times at 1 A g−1 was achieved. These attractive results encourage the design and synthesis of high heteroatom content ordered porous carbons for applications in the field of energy storage and conversion.
8

Tailoring Pore Size and Polarity for Liquid Phase Adsorption by Porous Carbons

Hippauf, Felix 28 March 2017 (has links)
Adsorption is a versatile purification technique to selectively separate different peptide fractions from a mixture using mild operation conditions. Porous carbons are ideally suited to separate ACE-inhibiting dipeptides by combining tailored size exclusion and polarity selectivity. The desired peptide fraction is mostly hydrophobic and very small and should adsorb inside hydrophobic micropores. The second topic of this thesis is linked to energy storage. The lithium-sulfur battery is a promising alternative to common lithium-ion batteries with theoretical capacities of up to 1672 mAh g−1 sulfur. The second aim of this thesis is to conduct an in-depth investigation of polysulfides interacting with selected carbon materials in a simplified battery electrolyte environment. The focus of this study is laid on the impact of surface polarity and pore size distribution of the carbon to develop a quantitative correlation between polysulfide retention and porosity metrics. Both, the enrichment of ACE-inhibitors and the retention of polysulfides rely on liquid phase adsorption in porous materials, linking the above mentioned topics. This thesis not only aims to develop an enrichment process or to find a superior battery cathode but also strives to explore structure-property relationships that are universally valid. Understanding the complex interplay of pore size and polarity leading to selective interactions between pore wall and the adsorbed species is given a high priority.
9

Resin and carbon foam production by cationic step-growth polymerization of organic carbonates

Wöckel, L., Seifert, A., Mende, C., Roth-Panke, I., Kroll, L., Spange, S. 06 March 2017 (has links)
Acid induced step-growth polymerizations of bis(p-methoxybenzyl) carbonate (pMBC), bis(m-methoxybenzyl) carbonate (mMBC) and difurfuryl carbonate (DFC) have been performed to produce resin-foams, because controlled release of carbon dioxide takes place during polymerization of those organic carbonates. The monomers are polymerized in bulk using p-toluene sulfonic acid (pTS) as a catalyst. The volume development of the foams is assisted by use of an appropriate surfactant and the crosslinking agent 1,3,5-trioxane as co-components. A portion of carbon dioxide release is a function of the carbenium stability of the reactive intermediate derived from the monomer; DFC > pMBC ≫ mMBC. Resins derived from mMBC can be post-treated to release carbon dioxide after polymerization. The molecular structures of the resulting materials are investigated by solid state 13C-NMR spectroscopy and IR spectroscopy. Scanning electron microscopy was used to study foam morphology. The carbon dioxide release was monitored with TG-MS analysis. Finally, the polymer foams have been converted into carbon foams and investigated by means of mercury porosimetry. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
10

Biopolymerbasierte Materialien als Precursoren für elektrochemische Anwendungen

Fischer, Johanna 16 May 2024 (has links)
Elektrochemische Energiespeicher sind entscheidend für eine zuverlässige Energieversorgung angesichts steigender Nachfrage und knapper Ressourcen. Die fortlaufende Entwicklung möglichst umweltfreundlicher Materialien mit guter Verfügbarkeit ist essenziell für die Verbesserung von deren Leistungsfähigkeit. Ziel der Arbeit war die Nutzung cellulosebasierter Präkursoren zur Herstellung von Elektrodenmaterialien für die elektrochemischen Energiespeicher Superkondensator und Li-Ionen-Batterie. Dabei werden die Struktur-Eigenschaftsbeziehungen von Präkursormaterial und Kohlenstoff, sowie deren Einfluss auf die resultierenden elektrochemischen Leistungen untersucht. Mittels Acetatverfahren können sphärische Partikel auf Basis von Cellulose mit einer Partikelgröße < 5 µm und enger Partikelgrößenverteilung hergestellt werden. Bei der Herstellung sphärischer Partikel aus Celluloseacetat werden eine Vielzahl verschiedener Parameter im Herstellungsprozess variiert und deren Einfluss auf die Eigenschaften der sphärischen Partikel verändert. Außerdem werden die Cellulosederivate Celluloseacetat-butyrat und Celluloseacetat-phthalat als Ausgangsmaterial zur Herstellung sphärischer Partikel verwendet. Die hergestellten sphärischen Partikel werden mittels Pyrolyse zu Kohlenstoff umgewandelt, wobei zum einen der Einfluss der Eigenschaften der sphärischen Präkursoren auf die resultierenden Kohlenstoffe und zum anderen der Einfluss verschiedener Carbonisierungsbedingungen (Carbonisierungstemperatur, Haltezeit, Heizrate) anhand von sphärischen Celluloseacetatpartikeln mit einer Partikelgröße < 5 µm untersucht werden. Zur Vergrößerung der Oberfläche und zur Veränderung der Porenstruktur werden aktivierte Kohlenstoffe hergestellt. Dabei wird KOH in verschiedenen Aktivierungsgraden C : KOH verwendet sowie alternative Aktivierungsreagenzien getestet. Die (aktivierten) Kohlenstoffe dienen als Elektrodenmaterialien in Superkondensatoren, Li-Ionen-Batterien und Li-Ionen-Kondensatoren. Die hergestellten Kohlenstoffe zeigen vielversprechende Kapazitäten als Elektrodenmaterial in symmetrischen Superkondensatoren mit KOH-Elektrolytlösung, insbesondere bei Verwendung von aktiviertem Kohlenstoff aus sphärischen Celluloseacetatpartikeln. Außerdem werden verschiedene neutrale wässrige Elektrolytlösungen als Alternative zu alkalischen KOH-Lösungen getestet und der Einfluss von Konzentration und Arbeitstemperatur betrachtet. Weiterhin kann die Eignung der hergestellten nicht-aktivierten Kohlenstoffe aus Celluloseacetat-Perlen als Anodenmaterial in Lithium-Ionen-Batterien als Alternative zu Graphit gezeigt werden, insbesondere hinsichtlich Langzeitstabilität und dem Einsatz bei hohen Betriebstemperaturen. Auch ein möglicher Einsatz der aktivierten Kohlenstoffe aus Celluloseacetat-Perlen in Li-Ionen-Kondensatoren als Kathodenmaterial mit TNO-Anode wird geprüft.:ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS ABKÜRZUNGSVERZEICHNIS SYMBOLVERZEICHNIS 1 EINLEITUNG 2 THEORETISCHE GRUNDLAGEN 2.1 Ausgangsmaterialien 2.1.1 Cellulose 2.1.2 Celluloseester (Celluloseacetat, Celluloseacetat-butyrat, Celluloseacetat-phthalat) 2.1.3 Sphärische Partikel aus Cellulose und Cellulosederivaten 2.2 Kohlenstoffe 2.2.1 Kohlenstoffe in Energiespeichern 2.2.2 Amorphe Kohlenstoffe 2.2.3 Aktivierte Kohlenstoffe 2.3 Elektrochemische Speichermethoden 2.3.1 Superkondensatoren 2.3.1.1 Speicherarten – EDLC vs. Pseudokapazität 2.3.1.2 Elektrodenmaterialien 2.3.1.3 Elektrolytsysteme 2.3.2 Lithium-Ionen-Batterien 2.3.3 Lithium-Ionen-Kondensatoren 2.4 Methoden zur strukturellen Charakterisierung 2.4.1 Laserbeugungsspektroskopie 2.4.2 Sedimentationsverhalten zur Bestimmung der Porosität 2.4.3 Stickstoffphysiosorption 2.4.4 Raman-Spektroskopie 2.4.5 Rasterelektronenmikroskopie 2.4.6 Röntgendiffraktometrie 2.4.7 Viskositätsmessungen 2.5 Elektrochemische Charakterisierung 2.5.1 Zyklische Voltammetrie 2.5.2 Galvanostatisches Zyklieren 2.5.3 Elektrochemische Impedanzspektroskopie 2.5.4 Galvanostatische intermittierende Titrationstechnik 3 EXPERIMENTELLER TEIL 3.1 Herstellung Perlcellulose 3.1.1 Herstellung der sphärischen Celluloseester / Deacetylierung 3.1.2 Variationen der Parameter 3.2 Carbonisierung / Aktivierung 3.3 Herstellung der Elektrochemischen Energiespeicher 3.3.1 Superkondensatoren 3.3.2 Lithium-Ionen-Batterien 3.3.3 Lithium-Ionen-Kondensatoren 3.4 Chemikalien 3.5 Geräte und Methoden 4 ERGEBNISSE & DISKUSSION 4.1 Ausgangsmaterialien für die Herstellung von sphärischen Celluloseestern 4.2 Sphärische Celluloseester 4.2.1 Verschiedene CA-Materialien 4.2.2 Deacetylierung zur Perlcellulose 4.2.3 Partikelgröße 4.2.4 Salzgehalt 4.2.5 Tensidgehalt 4.2.6 Celluloseacetat-butyrat 4.2.7 Celluloseacetat-phthalat 4.2.8 Zusammenfassung der Herstellung sphärischer Partikel aus Celluloseestern 4.3 Kohlenstoffe auf Basis von sphärischen Celluloseestern 4.3.1 Einfluss der Carbonisierungsbedingungen auf die hergestellten Kohlenstoffe aus CA1-Perlen 4.3.2 Einfluss der verschiedenen Herstellungsbedingungen der Celluloseacetat-Perlen auf den resultierenden Kohlenstoff 4.3.3 Kohlenstoffe aus Celluloseacetat-butyrat-Perlen 4.3.4 Kohlenstoffe aus Celluloseacetat-phthalat 4.3.5 Zusammenhänge zwischen Präkursoren und Kohlenstoffen 4.4 Aktivierte Kohlenstoffe 4.4.1 Aktivierung von CA- und CAB-Perlen mit KOH 4.4.2 Vergleich von KOH mit anderen Aktivierungsreagenzien 4.5 Superkondensatoren mit Elektroden aus Kohlenstoffen auf Basis von sphärischen Celluloseestern in alkalischen Elektrolyten 4.5.1 Einfluss der Carbonisierungsbedingungen auf die Performance von Superkondensatoren mit CA1-Elektroden 4.5.2 Superkondensatoren auf Basis von Kohlenstoffen aus verschiedenen Celluloseestern 4.5.3 Aktivierte Kohlenstoffe 4.5.4 Zusammenhang zwischen den hergestellten Kohlenstoffen und deren Einsatz als Elektrodenmaterial in Superkondensatoren 4.6 Vergleich von alkalischen und neutralen Elektrolyten in Superkondensatoren 4.6.1 Charakterisierung der Elektrolyte 4.6.2 Neutrale Elektrolyte und alkalische Elektrolyte im Vergleich 4.6.3 Einfluss von Konzentration und Temperatur auf die Zellperformance mit Na2SO4-Elektrolyten 4.7 Kohlenstoffe aus sphärischen Celluloseestern als Anodenmaterial in Lithium-Ionen-Batterien 4.7.1 Einfluss der Carbonisierungsbedingungen auf CA1 als Anodenmaterial 4.7.2 Bindersysteme 4.7.3 Kohlenstoffe aus Celluloseestern mit verschiedenen Herstellungsbedingungen 4.7.4 Einfluss der Temperatur 4.8 Lithium-Ionen-Kondensatoren mit aktiviertem Kohlenstoff aus CA-Perlen als Kathodenmaterial 4.9 Vergleich der Kohlenstoffe als Elektrodenmaterial in den verschiedenen Energiespeichersystemen 5 ZUSAMMENFASSUNG 6 LITERATURVERZEICHNIS 7 ANHANG

Page generated in 0.0708 seconds