81 |
Graph polynomials and their representationsTrinks, Martin 19 September 2012 (has links) (PDF)
Graph polynomials are polynomials associated to graphs that encode the number of subgraphs with given properties. We list different frameworks used to define graph polynomials in the literature. We present the edge elimination polynomial and introduce several graph polynomials equivalent to it. Thereby, we connect a recursive definition to the counting of colorings and to the counting of (spanning) subgraphs. Furthermore, we define a graph polynomial that not only generalizes the mentioned, but also many of the well-known graph polynomials, including the Potts model, the matching polynomial, the trivariate chromatic polynomial and the subgraph component polynomial. We proof a recurrence relation for this graph polynomial using edge and vertex operation. The definitions and statements are given in such a way that most of them are also valid in the case of hypergraphs.
|
82 |
Branch-and-Cut for a Semidefinite Relaxation of Large-scale Minimum Bisection ProblemsArmbruster, Michael 22 June 2007 (has links) (PDF)
This thesis deals with the exact solution of large-scale minimum bisection problems via a semidefinite relaxation in a branch-and-cut framework. After reviewing known results on the underlying bisection cut polytope a study of new facet-defining inequalities is presented. They are derived from the known knapsack tree inequalities. We investigate strengthenings based on the new cluster weight polytope and present polynomial separation algorithms for special cases. The dual of the semidefinite relaxation of the minimum bisection problem is tackled in its equivalent form as an eigenvalue optimisation problem with the spectral bundle method. Implementational details regarding primal heuristics, branching rules, so-called support extensions for cutting planes and warm start are presented. We conclude with a computational study in which we show that our approach is competetive to state-of-the-art implementations using linear programming or semidefinite programming relaxations. / Diese Dissertation befasst sich mit der exakten Lösung großer Minimum Bisection Probleme über eine semidefinite Relaxierung in einem Branch-and-Cut Zugang. Nachdem bekannte Resultate zum zugrundeliegenden Bisection Cut Polytop dargestellt wurden, wird eine Studie neuer facettendefinierender Ungleichungen präsentiert. Diese werden von den bekannten Knapsack Tree Ungleichungen abgeleitet. Wir untersuchen Verstärkungen basierend auf dem neuen Cluster Weight Polytop und zeigen polynomiale Separierungsalgorithmen für Spezialfälle. Die Duale der semidefiniten Relaxierung des Minumum Bisection Problems wird in ihrer äquivalenten Form als Eigenwertoptimierungsproblem mit dem Spektralen Bündelverfahren bearbeitet. Details der Implementierung bezüglich primaler Heuristiken, Branchingregeln, sogenannter Supporterweiterungen für die Schnittebenen und Warmstart werden präsentiert. Wir beenden die Arbeit mit einer numerischen Studie, in der wir zeigen, dass unser Zugang konkurrenzfähig zu aktuellen Implementationen basierend auf linearen und semidefiniten Relaxierungen ist.
|
83 |
Concerning Triangulations of Products of SimplicesSarmiento Cortes, Camilo Eduardo 30 June 2014 (has links) (PDF)
In this thesis, we undertake a combinatorial study of certain aspects of triangulations of cartesian products of simplices, particularly in relation to their relevance in toric algebra and to their underlying product structure.
The first chapter reports joint work with Samu Potka. The object of study is a class of homogeneous toric ideals called cut ideals of graphs, that were introduced by Sturmfels and Sullivant 2006. Apart from their inherent appeal to combinatorial commutative algebra, these ideals also generalize graph statistical models for binary data and are related to some statistical models for phylogenetic trees.
Specifically, we consider minimal free resolutions for the cut ideals of trees. We propose a method to combinatorially estimate the Betti numbers of the ideals in this class. Using this method, we derive upper bounds for some of the Betti numbers, given by formulas exponential in the number of vertices of the tree.
Our method is based on a common technique in commutative algebra whereby arbitrary homogeneous ideals are deformed to initial monomial ideals, which are easier to analyze while conserving some of the information of the original ideals. The cut ideal of a tree on n vertices turns out to be isomorphic to the Segre product of the cut ideals of its n-1 edges (in particular, its algebraic properties do not depend on its shape). We exploit this product structure to deform the cut ideal of a tree to an initial monomial ideal with a simple combinatorial description: it coincides with the edge ideal of the incomparability graph of the power set of the edges of the tree. The vertices of the incomparability graph are subsets of the edges of the tree, and two subsets form an edge whenever they are incomparable.
In order to obtain algebraic information about these edge ideals, we apply an idea introduced by Dochtermann and Engström in 2009 that consists in regarding the edge ideal of a graph as the (monomial) Stanley-Reisner ideal of the independence complex of the graph. Using Hochster\'s formula for computting Betti numbers of Stanley-Reisner ideals by means of simplicial homology, the computation of the Betti numbers of these monomial ideals is turned to the enumeration of induced subgraphs of the incomparability graph. That the resulting values give upper bounds for the Betti numbers of the cut ideals of trees is an important well-known result in commutative algebra.
In the second chapter, we focus on some combinatorial features of triangulations of the point configuration obtained as the cartesian product of two standard simplices. These were explored in collaboration with César Ceballos and Arnau Padrol, and had a two-fold motivation. On the one hand, we intended to understand the influence of the product structure on the set of triangulations of the cartesian product of two point configurations; on the other hand, the set of all triangulations of the product of two simplices is an intricate and interesting object that has attracted attention both in discrete geometry and in other fields of mathematics such as commutative algebra, algebraic geometry, enumerative geometry or tropical geometry.
Our approach to both objectives is to examine the circumstances under which a triangulation of the polyhedral complex given by the the product of an (n-1)-simplex times the (k-1)-skeleton of a (d-1)-simplex extends to a triangulation of an (n-1)-simplex times a (d-1)-simplex. We refer to the former as a partial triangulation of the product of two simplices.
Our main result says that if d >= k > n, a partial triangulation always extends to a uniquely determined triangulation of the product of two simplices. A somewhat unexpected interpretation of this result is as a finiteness statement: it asserts that if d is sufficiently larger than n, then all partial triangulations are uniquely determined by the (compatible) triangulations of its faces of the form “(n-1)-simplex times n-simplex”. Consequently, one can say that in this situation ‘\'triangulations of an (n-1)-simplex times a (d-1)-simplex are not much more complicated than triangulations of an (n-1)-simplex times an n-simplex\'\'.
The uniqueness assertion of our main result holds already when d>=k>=n. However, the same is not true for the existence assertion; namely, there are non extendable triangulations of an (n-1)-simplex times the boundary of an n-simplex that we explicitly construct.
A key ingredient towards this construction is a triangulation of the product of two (n-1)-simplices that can be seen as its ``second simplest triangulation\'\' (the simplest being its staircase triangulation). It seems to be knew, and we call it the Dyck path triangulation. This triangulation displays symmetry under the cyclic group of order n that acts by simultaneously cycling the indices of the points in both factors of the product.
Next, we exhibit a natural extension of the Dyck path triangulation to a triangulation of an (n-1)-simplex times an n-simplex that, in a sense, enjoys some sort of ‘\'rigidity\'\' (it also seems new). Performing a ‘\'local modification\'\' on the restriction of this extended triangulation to the polyhedral complex given by (n-1)-simplex times the boundary of an n-simplex yields the non-extendable partial triangulation.
The thesis includes two appendices on basic commutative algebra and triangulations of point configuration, included to make it slightly self-contained.
|
84 |
Modulare Synthese von neuartigen Liganden und Metallkomplexen für die KatalyseGeis, Oliver. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--Berlin.
|
85 |
Beiträge zur Weiterentwicklung der Olefinmetathese kombinatorische Synthese und neue Katalysatoren /Schürer, Stephan C. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--Berlin.
|
86 |
Kombinatorische Festphasensynthese und Molecular-modelling-Studien von Inhibitoren und Aktivatoren Signal-transduzierender EnzymeKissau, Lars. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Dortmund.
|
87 |
Festphasengebundene chirale Hydrazine als Auxiliare in der asymmetrischen SyntheseSchooren, Jürgen. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
|
88 |
Kombinatorische PVD-Synthese und Strukturuntersuchungen der Ge-Sb-Te-SchichtenKyrsta, Stepan. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2005--Aachen.
|
89 |
Adaptive Steuerung von flexiblen Werkstattfertigungssysteme Nutzung moderner Informations- und Kommunikationstechnologien zur effizienten Produktionssteuerung unter EchtzeitbedingungenBrackel, Thomas van January 2008 (has links)
Zugl.: Paderborn, Univ., Diss., 2008
|
90 |
Entwicklung einer Methode zur Suche nach Kristallisationsinitiatoren für Salzhydratschmelzen mittels High-Troughput-ScreeningRudolph, Carsten 08 November 2002 (has links)
Anorganische Salzhydrate sind aufgrund ihrer hohen spezifischen Schmelzwärmen als Phase-Change-Materials(PCM) für Latentwärmespeicher favorisiert. Die Unterkühlung der Salzhydratschmelzen stellt oftmals ein besonderes Problem bei technischen Anwendungen dar. Erstmalig wurden kombinatorische Methoden zur strukturell unspezifischen Suche nach Keimbildnern genutzt. Das hier entwickelte Verfahren erlaubt es, thermische Kristallisationseffekte zwischen 10°C und 170°C zu untersuchen. Bis zu 2025 Materialkombinationen können sowohl parallel synthetisiert als auch analysiert werden. Die Synthese der Keimbildner erfolgte durch Verhältnisvariation gelöster Salze mittels automatisierter Dosierung auf Trägerplatten und anschließendem Tempern. Die aktiven Kombinationen wurden durch zeitaufgelöste Thermographie identifiziert. Die Schlüssigkeit des gesamten Verfahrens konnte durch das erfolgreiche Screening zweier PCM mit unterschiedlichen Schalttemperaturen (NaCH3COO*3H2O; Fp=58°C und LiNO3*3H2O; Fp=29°C) nachgewiesen werden.
|
Page generated in 0.0585 seconds