• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ramanujan Regular Hypergraphs based on special Affine Bruhat-Tits Buildings / Ramanujan Regular Hypergraphs mit Affine Bruhat-Tits Gebäude

Sarveniazi, Alireza 20 January 2004 (has links)
No description available.
2

Graph polynomials and their representations

Trinks, Martin 19 September 2012 (has links) (PDF)
Graph polynomials are polynomials associated to graphs that encode the number of subgraphs with given properties. We list different frameworks used to define graph polynomials in the literature. We present the edge elimination polynomial and introduce several graph polynomials equivalent to it. Thereby, we connect a recursive definition to the counting of colorings and to the counting of (spanning) subgraphs. Furthermore, we define a graph polynomial that not only generalizes the mentioned, but also many of the well-known graph polynomials, including the Potts model, the matching polynomial, the trivariate chromatic polynomial and the subgraph component polynomial. We proof a recurrence relation for this graph polynomial using edge and vertex operation. The definitions and statements are given in such a way that most of them are also valid in the case of hypergraphs.
3

Graph polynomials and their representations

Trinks, Martin 27 August 2012 (has links)
Graph polynomials are polynomials associated to graphs that encode the number of subgraphs with given properties. We list different frameworks used to define graph polynomials in the literature. We present the edge elimination polynomial and introduce several graph polynomials equivalent to it. Thereby, we connect a recursive definition to the counting of colorings and to the counting of (spanning) subgraphs. Furthermore, we define a graph polynomial that not only generalizes the mentioned, but also many of the well-known graph polynomials, including the Potts model, the matching polynomial, the trivariate chromatic polynomial and the subgraph component polynomial. We proof a recurrence relation for this graph polynomial using edge and vertex operation. The definitions and statements are given in such a way that most of them are also valid in the case of hypergraphs.
4

Quasi-random hypergraphs and extremal problems for hypergraphs

Person, Yury 06 December 2010 (has links)
In dieser Arbeit wird zuerst das Theorem von Chung, Graham und Wilson über quasi-zufällige Graphen zur sogenannten schwachen Quasi-Zufälligkeit für k-uniforme Hypergraphen verallgemeinert und somit eine Reihe äquivalenter Eigenschaften bestimmt. Basierend auf diesen Resultaten werden nichtbipartite Graphen gefunden, welche die Quasi-Zufälligkeit für Graphen ``forcieren''''. Zuvor waren nur bipartite Graphen mit dieser Eigenschaft bekannt. Desweiteren ist ein konzeptionell einfacher Algorithmus zum Verifizieren nicht erfüllbarer zufälliger k-SAT Formeln angegeben. Dann richtet sich der Fokus auf Anwendungen verschiedener Regularitätslemmata für Hypergraphen. Zuerst wird die Menge aller bezeichneten 3-uniformen Hypergraphen auf n Knoten, die keine Kopie des Hypergraphen der Fano Ebene enthalten, studiert. Es wird gezeigt, dass fast jedes Element aus dieser Menge ein bipartiter Hypergraph ist. Dies führt zu einem Algorithmus, der in polynomiell erwarteter Zeit einen zufälligen Fano-freien (und somit einen zufälligen bipartiten 3-uniformen) Hypergraphen richtig färbt. Schließlich wird die folgende extremale Funktion studiert. Es sind r Farben gegeben sowie ein k-uniformer Hypergraph F. Auf wie viele verschiedene Arten kann man die Kanten eines k-uniformen Hypergraphen H färben, so dass keine monochromatische Kopie von F entsteht? Welche Hypergraphen H maximieren die Anzahl erlaubter Kantenfärbungen? Hier wird ein strukturelles Resultat für eine natürliche Klasse von Hypergraphen bewiesen. Es wird für viele Hypergraphen F, deren extremaler Hypergraph bekannt ist, gezeigt, dass im Falle von zwei oder drei Farben die extremalen Hypergraphen die oben beschriebene Funktion maximieren, während für vier oder mehr Farben andere Hypergraphen mehr Kantenfärbungen zulassen. / This thesis presents first one possible generalization of the result of Chung, Graham and Wilson to k-uniform hypergraphs, and studies the so-called weak quasi-randomness. As applications we obtain a simple strong refutation algorithm for random sparse k-SAT formulas and we identify first non-bipartite forcing pairs for quasi-random graphs. Our focus then shifts from the study of quasi-random objects to applications of different versions of the hypergraph regularity lemmas; all these versions assert decompositions of hypergraphs into constantly many quasi-random parts, where the meaning of ``quasi-random'''' takes different contexts in different situations. We study the family of hypergraphs not containing the hypergraph of the Fano plane as a subhypergraph, and show that almost all members of this family are bipartite. As a consequence an algorithm for coloring bipartite 3-uniform hypergraphs with average polynomial running time is given. Then the following combinatorial extremal problem is considered. Suppose one is given r colors and a fixed hypergraph F. The question is: In at most how many ways can one color the hyperedges of a hypergraph H on n vertices such that no monochromatic copy of F is created? What are the extremal hypergraphs for this function? Here a structural result for a natural family of hypergraphs F is proven. For some special classes of hypergraphs we show that their extremal hypergraphs (for large n) maximize the number of edge colorings for 2 and 3 colors, while for at least 4 colors other hypergraphs are optimal.
5

Extremal hypergraph theory and algorithmic regularity lemma for sparse graphs

Hàn, Hiêp 18 October 2011 (has links)
Einst als Hilfssatz für Szemerédis Theorem entwickelt, hat sich das Regularitätslemma in den vergangenen drei Jahrzehnten als eines der wichtigsten Werkzeuge der Graphentheorie etabliert. Im Wesentlichen hat das Lemma zum Inhalt, dass dichte Graphen durch eine konstante Anzahl quasizufälliger, bipartiter Graphen approximiert werden können, wodurch zwischen deterministischen und zufälligen Graphen eine Brücke geschlagen wird. Da letztere viel einfacher zu handhaben sind, stellt diese Verbindung oftmals eine wertvolle Zusatzinformation dar. Vom Regularitätslemma ausgehend gliedert sich die vorliegende Arbeit in zwei Teile. Mit Fragestellungen der Extremalen Hypergraphentheorie beschäftigt sich der erste Teil der Arbeit. Es wird zunächst eine Version des Regularitätslemmas Hypergraphen angewandt, um asymptotisch scharfe Schranken für das Auftreten von Hamiltonkreisen in uniformen Hypergraphen mit hohem Minimalgrad herzuleiten. Nachgewiesen werden des Weiteren asymptotisch scharfe Schranken für die Existenz von perfekten und nahezu perfekten Matchings in uniformen Hypergraphen mit hohem Minimalgrad. Im zweiten Teil der Arbeit wird ein neuer, Szemerédis ursprüngliches Konzept generalisierender Regularitätsbegriff eingeführt. Diesbezüglich wird ein Algorithmus vorgestellt, welcher zu einem gegebenen Graphen ohne zu dichte induzierte Subgraphen eine reguläre Partition in polynomieller Zeit berechnet. Als eine Anwendung dieses Resultats wird gezeigt, dass das Problem MAX-CUT für die oben genannte Graphenklasse in polynomieller Zeit bis auf einen multiplikativen Faktor von (1+o(1)) approximierbar ist. Der Untersuchung von Chung, Graham und Wilson zu quasizufälligen Graphen folgend wird ferner der sich aus dem neuen Regularitätskonzept ergebende Begriff der Quasizufälligkeit studiert und in Hinsicht darauf eine Charakterisierung mittels Eigenwertseparation der normalisierten Laplaceschen Matrix angegeben. / Once invented as an auxiliary lemma for Szemerédi''s Theorem the regularity lemma has become one of the most powerful tools in graph theory in the last three decades which has been widely applied in several fields of mathematics and theoretical computer science. Roughly speaking the lemma asserts that dense graphs can be approximated by a constant number of bipartite quasi-random graphs, thus, it narrows the gap between deterministic and random graphs. Since the latter are much easier to handle this information is often very useful. With the regularity lemma as the starting point two roads diverge in this thesis aiming at applications of the concept of regularity on the one hand and clarification of several aspects of this concept on the other. In the first part we deal with questions from extremal hypergraph theory and foremost we will use a generalised version of Szemerédi''s regularity lemma for uniform hypergraphs to prove asymptotically sharp bounds on the minimum degree which ensure the existence of Hamilton cycles in uniform hypergraphs. Moreover, we derive (asymptotically sharp) bounds on minimum degrees of uniform hypergraphs which guarantee the appearance of perfect and nearly perfect matchings. In the second part a novel notion of regularity will be introduced which generalises Szemerédi''s original concept. Concerning this new concept we provide a polynomial time algorithm which computes a regular partition for given graphs without too dense induced subgraphs. As an application we show that for the above mentioned class of graphs the problem MAX-CUT can be approximated within a multiplicative factor of (1+o(1)) in polynomial time. Furthermore, pursuing the line of research of Chung, Graham and Wilson on quasi-random graphs we study the notion of quasi-randomness resulting from the new notion of regularity and concerning this we provide a characterisation in terms of eigenvalue separation of the normalised Laplacian matrix.
6

Regular partitions of hypergraphs and property testing

Schacht, Mathias 28 October 2010 (has links)
Die Regularitätsmethode für Graphen wurde vor über 30 Jahren von Szemerédi, für den Beweis seines Dichteresultates über Teilmengen der natürlichen Zahlen, welche keine arithmetischen Progressionen enthalten, entwickelt. Grob gesprochen besagt das Regularitätslemma, dass die Knotenmenge eines beliebigen Graphen in konstant viele Klassen so zerlegt werden kann, dass fast alle induzierten bipartiten Graphen quasi-zufällig sind, d.h. sie verhalten sich wie zufällige bipartite Graphen mit derselben Dichte. Das Regularitätslemma hatte viele weitere Anwendungen, vor allem in der extremalen Graphentheorie, aber auch in der theoretischen Informatik und der kombinatorischen Zahlentheorie, und gilt mittlerweile als eines der zentralen Hilfsmittel in der modernen Graphentheorie. Vor wenigen Jahren wurden Regularitätslemmata für andere diskrete Strukturen entwickelt. Insbesondere wurde die Regularitätsmethode für uniforme Hypergraphen und dünne Graphen verallgemeinert. Ziel der vorliegenden Arbeit ist die Weiterentwicklung der Regularitätsmethode und deren Anwendung auf Probleme der theoretischen Informatik. Im Besonderen wird gezeigt, dass vererbbare (entscheidbare) Hypergrapheneigenschaften, das sind Familien von Hypergraphen, welche unter Isomorphie und induzierten Untergraphen abgeschlossen sind, testbar sind. D.h. es existiert ein randomisierter Algorithmus, der in konstanter Laufzeit mit hoher Wahrscheinlichkeit zwischen Hypergraphen, welche solche Eigenschaften haben und solchen die „weit“ davon entfernt sind, unterscheidet. / About 30 years ago Szemerédi developed the regularity method for graphs, which was a key ingredient in the proof of his famous density result concerning the upper density of subsets of the integers which contain no arithmetic progression of fixed length. Roughly speaking, the regularity lemma asserts, that the vertex set of every graph can be partitioned into a constant number of classes such that almost all of the induced bipartite graphs are quasi-random, i.e., they mimic the behavior of random bipartite graphs of the same density. The regularity lemma had have many applications mainly in extremal graph theory, but also in theoretical computer science and additive number theory, and it is considered one of the central tools in modern graph theory. A few years ago the regularity method was extended to other discrete structures. In particular extensions for uniform hypergraphs and sparse graphs were obtained. The main goal of this thesis is the further development of the regularity method and its application to problems in theoretical computer science. In particular, we will show that hereditary, decidable properties of hypergraphs, that are properties closed under isomorphism and vertex removal, are testable. I.e., there exists a randomised algorithm with constant running time, which distinguishes between Hypergraphs displaying the property and those which are “far” from it.
7

Reproducible geoscientific modelling with hypergraphs

Semmler, Georg 04 September 2023 (has links)
Reproducing the construction of a geoscientific model is a hard task. It requires the availability of all required data and an exact description how the construction was performed. In practice data availability and the exactness of the description is often lacking. As part of this thesis I introduce a conceptual framework how geoscientific model constructions can be described as directed acyclic hypergraphs, how such recorded construction graphs can be used to reconstruct the model, and how repetitive constructions can be used to verify the reproducibility of a geoscientific model construction process. In addition I present a software prototype, implementing these concepts. The prototype is tested with three different case studies, including a geophysical measurement analysis, a subsurface model construction and the calculation of a hydrological balance model.:1. Introduction 1.1. Survey on Reproducibility and Automation for Geoscientific Model Construction 1.2. Motivating Example 1.3. Previous Work 1.4. Problem Description 1.5. Structure of this Thesis 1.6. Results Accomplished by this Thesis 2. Terms, Definitions and Requirements 2.1. Terms and Definitions 2.1.1. Geoscientific model 2.1.2. Reproducibility 2.1.3. Realisation 2.2. Requirements 3. Related Work 3.1. Overview 3.2. Geoscientific Data Storage Systems 3.2.1. PostGIS and Similar Systems 3.2.2. Geoscience in Space and Time (GST) 3.3. Geoscientific Modelling Software 3.3.1. gOcad 3.3.2. GemPy 3.4. Experimentation Management Software 3.4.1. DataLad 3.4.2. Data Version Control (DVC) 3.5. Reproducible Software Builds 3.6. Summarised Releated Work 4. Concept 4.1. Construction Hypergraphs 4.1.1. Reproducibility Based on Construction Hypergraphs 4.1.2. Equality definitions 4.1.3. Design Constraints 4.2. Data Handling 5. Design 5.1. Application Structure 5.1.1. Choice of Application Architecture for GeoHub 5.2. Extension Mechanisms 5.2.1. Overview 5.2.2. A Shared Library Based Extension System 5.2.3. Inter-Process Communication Based Extension System 5.2.4. An Extension System Based on a Scripting Language 5.2.5. An Extension System Based on a WebAssembly Interface 5.2.6. Comparison 5.3. Data Storage 5.3.1. Overview 5.3.2. Stored Data 5.3.3. Potential Solutions 5.3.4. Model Versioning 5.3.5. Transactional security 6. Implementation 6.1. General Application Structure 6.2. Data Storage 6.2.1. Database 6.2.2. User-provided Data-processing Extensions 6.3. Operation Executor 6.3.1. Construction Step Descriptions 6.3.2. Construction Step Scheduling 6.3.3. Construction Step Execution 7. Case Studies 7.1. Overview 7.2. Geophysical Model of the BHMZ block 7.2.1. Provided Data and Initial Situation 7.2.2. Construction Process Description 7.2.3. Reproducibility 7.2.4. Identified Problems and Construction Process Improvements 7.2.5. Recommendations 7.3. Three-Dimensional Subsurface Model of the Kolhberg Region 7.3.1. Provided Data and Initial Situation 7.3.2. Construction Process Description 7.3.3. Reproducibility 7.3.4. Identified Problems and Construction Process Improvements 7.3.5. Recommendations 7.4. Hydrologic Balance Model of a Saxonian Stream 7.4.1. Provided Data and Initial Situation 7.4.2. Construction Process Description 7.4.3. Reproducibility 7.4.4. Identified Problems and Construction Process Improvements 7.4.5. Recommendations 7.5. Lessons Learned 8. Conclusions 8.1. Summary 8.2. Outlook 8.2.1. Parametric Model Construction Process 8.2.2. Pull and Push Nodes 8.2.3. Parallelize Single Construction Steps 8.2.4. Provable Model Construction Process Attestation References Appendix
8

On the Complexity of Binary Polynomial Optimization Over Acyclic Hypergraphs

Del Pia, Alberto, Di Gregorio, Silvia 19 March 2024 (has links)
In this work, we advance the understanding of the fundamental limits of computation for binary polynomial optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points. In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical and computational perspective. In fact, we give a strongly polynomial-time algorithm for instances whose corresponding hypergraph is β-acyclic. We note that the β-acyclicity assumption is natural in several applications including relational database schemes and the lifted multicut problem on trees. Due to the novelty of our proving technique, we obtain an algorithm which is interesting also from a practical viewpoint. This is because our algorithm is very simple to implement and the running time is a polynomial of very low degree in the number of nodes and edges of the hypergraph. Our result completely settles the computational complexity of BPO over acyclic hypergraphs, since the problem is NP-hard on α-acyclic instances.Our algorithm can also be applied to any general BPO problem that contains β-cycles. For these problems, the algorithm returns a smaller instance together with a rule to extend any optimal solution of the smaller instance to an optimal solution of the original instance.

Page generated in 0.0443 seconds