Spelling suggestions: "subject:"diskrepanz"" "subject:"diskrepans""
1 |
The discrepancy between "ideal" and "real world" international tax rules. What drives politicians when making the rules?Braun, Julia 25 October 2012 (has links) (PDF)
The current international tax system diverges greatly from a theoretically "optimal" tax
system. One reason for this discrepancy may be that politicians strive for other objectives rather than
making tax rules that comply with the theoretical concepts of optimal taxation. In this article, I
overview the approaches used in the economic and legal literature to explain the motivations of the
people making international tax policy and contrast them with observations from the "real world".
This article illustrates that the making of international tax policy is affected by many different factors:
domestic pressure groups and the structure of the international tax system, along with selfinterested
politicians and bureaucrats. Considering the complexity of the conditions under which
international tax policy is made, it is not astonishing that international tax law deviates from the
principles characterizing ideal taxation. (author's abstract) / Series: WU International Taxation Research Paper Series
|
2 |
Countering the declining use of lithium therapy: a call to armsMalhi, Gin S., Bell, Erica, Jadidi, Maedeh, Gitlin, Michael, Bauer, Michael 19 September 2024 (has links)
For over half a century, it has been widely known that lithium is the most efficacious treatment for bipolar disorder. Yet, despite this, its prescription has consistently declined over this same period of time. A number of reasons for this apparent disparity between evidence and clinical practice have been proposed, including a lack of confidence amongst clinicians possibly because of an absence of training and lack of familiarity with the molecule. Simultaneously, competition has grown within the pharmacological armamentarium for bipolar disorder with newer treatments promoting an image of being safer and easier to prescribe primarily because of not necessitating plasma monitoring, which understandably is appealing to patients who then exercise their preferences accordingly. However, these somewhat incipient agents are yet to reach the standard lithium has attained in terms of its efficacy in providing prophylaxis against the seemingly inevitable recrudescence of acute episodes that punctuates the course of bipolar disorder. In addition, none of these mimics have the additional benefits of preventing suicide and perhaps providing neuroprotection. Thus, a change in strategy is urgently required, wherein myths regarding the supposed difficulties in prescribing lithium and the gravity of its side-effects are resolutely dispelled. It is this cause to which we have pledged our allegiance and it is to this end that we have penned this article.
|
3 |
Extremal hypergraph theory and algorithmic regularity lemma for sparse graphsHàn, Hiêp 18 October 2011 (has links)
Einst als Hilfssatz für Szemerédis Theorem entwickelt, hat sich das Regularitätslemma in den vergangenen drei Jahrzehnten als eines der wichtigsten Werkzeuge der Graphentheorie etabliert. Im Wesentlichen hat das Lemma zum Inhalt, dass dichte Graphen durch eine konstante Anzahl quasizufälliger, bipartiter Graphen approximiert werden können, wodurch zwischen deterministischen und zufälligen Graphen eine Brücke geschlagen wird. Da letztere viel einfacher zu handhaben sind, stellt diese Verbindung oftmals eine wertvolle Zusatzinformation dar. Vom Regularitätslemma ausgehend gliedert sich die vorliegende Arbeit in zwei Teile. Mit Fragestellungen der Extremalen Hypergraphentheorie beschäftigt sich der erste Teil der Arbeit. Es wird zunächst eine Version des Regularitätslemmas Hypergraphen angewandt, um asymptotisch scharfe Schranken für das Auftreten von Hamiltonkreisen in uniformen Hypergraphen mit hohem Minimalgrad herzuleiten. Nachgewiesen werden des Weiteren asymptotisch scharfe Schranken für die Existenz von perfekten und nahezu perfekten Matchings in uniformen Hypergraphen mit hohem Minimalgrad. Im zweiten Teil der Arbeit wird ein neuer, Szemerédis ursprüngliches Konzept generalisierender Regularitätsbegriff eingeführt. Diesbezüglich wird ein Algorithmus vorgestellt, welcher zu einem gegebenen Graphen ohne zu dichte induzierte Subgraphen eine reguläre Partition in polynomieller Zeit berechnet. Als eine Anwendung dieses Resultats wird gezeigt, dass das Problem MAX-CUT für die oben genannte Graphenklasse in polynomieller Zeit bis auf einen multiplikativen Faktor von (1+o(1)) approximierbar ist. Der Untersuchung von Chung, Graham und Wilson zu quasizufälligen Graphen folgend wird ferner der sich aus dem neuen Regularitätskonzept ergebende Begriff der Quasizufälligkeit studiert und in Hinsicht darauf eine Charakterisierung mittels Eigenwertseparation der normalisierten Laplaceschen Matrix angegeben. / Once invented as an auxiliary lemma for Szemerédi''s Theorem the regularity lemma has become one of the most powerful tools in graph theory in the last three decades which has been widely applied in several fields of mathematics and theoretical computer science. Roughly speaking the lemma asserts that dense graphs can be approximated by a constant number of bipartite quasi-random graphs, thus, it narrows the gap between deterministic and random graphs. Since the latter are much easier to handle this information is often very useful. With the regularity lemma as the starting point two roads diverge in this thesis aiming at applications of the concept of regularity on the one hand and clarification of several aspects of this concept on the other. In the first part we deal with questions from extremal hypergraph theory and foremost we will use a generalised version of Szemerédi''s regularity lemma for uniform hypergraphs to prove asymptotically sharp bounds on the minimum degree which ensure the existence of Hamilton cycles in uniform hypergraphs. Moreover, we derive (asymptotically sharp) bounds on minimum degrees of uniform hypergraphs which guarantee the appearance of perfect and nearly perfect matchings. In the second part a novel notion of regularity will be introduced which generalises Szemerédi''s original concept. Concerning this new concept we provide a polynomial time algorithm which computes a regular partition for given graphs without too dense induced subgraphs. As an application we show that for the above mentioned class of graphs the problem MAX-CUT can be approximated within a multiplicative factor of (1+o(1)) in polynomial time. Furthermore, pursuing the line of research of Chung, Graham and Wilson on quasi-random graphs we study the notion of quasi-randomness resulting from the new notion of regularity and concerning this we provide a characterisation in terms of eigenvalue separation of the normalised Laplacian matrix.
|
4 |
Modellierung dynamischer Prozesse mit radialen Basisfunktionen / Modeling of dynamical processes using radial basis functionsDittmar, Jörg 20 August 2010 (has links)
No description available.
|
Page generated in 0.1078 seconds