Spelling suggestions: "subject:"kompakte."" "subject:"kompakten.""
1 |
Entropie-Index und Approximation für Lipschitz-AlgebrenHengge, Jürgen. January 2004 (has links) (PDF)
Tübingen, Universiẗat, Diss., 2004.
|
2 |
Generalized Kähler metrics on complex spaces and a supplement to a Theorem of Fornæss and NarasimhanPopa-Fischer, Anca. January 2000 (has links) (PDF)
Wuppertal, University, Diss., 2000.
|
3 |
Entropy and the approximation of functions on compact metric and topological spacesRichter, Christian. January 2001 (has links)
Jena, Univ., Habil.-Schr., 2001. / Computerdatei im Fernzugriff.
|
4 |
Entropy and the approximation of functions on compact metric and topological spacesRichter, Christian. January 2001 (has links)
Jena, Univ., Habil.-Schr., 2001. / Computerdatei im Fernzugriff.
|
5 |
Entropy and the approximation of functions on compact metric and topological spacesRichter, Christian. Unknown Date (has links)
University, Habil.-Schr., 2001--Jena.
|
6 |
Geraden in komplexen MannigfaltigkeitenRadtke, Achim 09 November 2001 (has links)
Gegenstand dieser Arbeit sind Geraden in komplexen Mannigfaltigkeiten. Dabei wird zum einen ein Geradenbegriff verwendet, der sich aus der Theorie der Twistorräume herleitet. Demnach ist eine Gerade in einer n-dimensionalen Mannigfaltigkeit eine rationale Kurve, deren Normalenbündel isomorph zu dem Normalenbündel einer Geraden im n-dimensionalen komplexen projektiven Raum ist. Einen engeren Geradenbegriff erhält man, wenn man darüberhinaus fordert, dass eine Umgebung der Kurve isomorph zu einer Umgebung einer Geraden im projektiven Raum ist. Solche Geraden heissen tubular. In der Arbeit wird gezeigt, dass die beiden Geradenbegriffe nicht äquivalent sind und ein Kriterium dafür angegeben, wann eine Gerade nicht tubular ist. Mit der Deformationstheorie folgt aus der Existenz einer Geraden in einer Mannigfaltigkeit die Existenz einer Familie von Geraden, wobei die Geraden eine offene Menge überdecken. Daher gibt es auf solchen Mannigfaltigkeiten keine holomorphen Differentialformen und somit sind die meisten Methoden der Klassifikationstheorie nicht anwendbar. Als einziger Zugang bleibt die algebraische Reduktion, die in dieser Arbeit für dreidimensionale Mannigfaltigkeiten mit Geraden untersucht wird, wobei sich zunächst eine grobe Charakterisierung dieser Räume ergibt. Der Fall der algebraischen Dimension 2 erweisst sich dann als besonders günstig, da solche Mannigfaltigkeiten elliptische Faserungen über komplexen Flächen sind und die Existenz der Geraden impliziert, dass diese Flächen rational sind. Elliptische Hauptfaserbündel mit Geraden können dann vollständig beschrieben werden. Allgemeine Faserungen lassen sich auf Faserungen über Hirzebruch-Flächen zurückführen. Für diese werden notwendige Bedingungen an die Existenz von Geraden hergeleitet. / In this work we study lines in complex manifolds. Mostly we use a definition of lines which comes from the thory of twistor spaces. That means a line is a rational curve in a complex manifold with the same normal bundle as a line in a projective space. Another possibility for the definition of lines is to demand that a complete neighbourhood of the rational curve is biholomorphic equivalent to a neighbourhood of a line in a projective space. Such lines a called tubular lines. In this work we show that these two definitions of lines are not equivalent and we give a criterion for a line not to be tubular. From deformation theory follows that the existence of a line in a manifold induces a family of lines which covers an open subset. Therefore there are no non-trivial homolorphic differential forms on the manifold and most of the techniques of classification theory do not work. Therefore we study the algebraic reduction of the manifold. For 3 dimensional complex manifolds with lines we get a rough description. In the case of algebraic dimension 2 the algebraic reduction is an elliptic fibration over a surface and from the existence of lines we can conclude that this surface is rational. For such fibrations we have good descriptions and we can generalize the situation to fibrations over minimal rational surfaces. For them we give necessary condtions for the exitence of lines.
|
7 |
The essential norm of multiplication operators on Lp(µ)Voigt, Jürgen 19 April 2024 (has links)
We show that the formula for the essential norm of a multiplication operator on L p, for 1 < p < ∞, also holds for p = 1. We also provide a proof for the formula which works simultaneously for all p ∈ [1,∞).
|
8 |
Bootstrap reservoir concepts for electro-hydraulic compact cylinder drivesKetelsen, Søren, Kolks, Giacomo, Andersen, Torben Ole, Schmidt, Lasse, Weber, Jürgen 26 June 2020 (has links)
This paper presents a conceptual study aiming to improve the compactness of electro-hydraulic compact drives (ECD ). In most current ECD architectures, gas accumulators are used as volume compensators for the flow imbalance emerging whenever asymmetric single rod cylinders are used. To stay within a required reservoir pressure range typically from two to four bar, a large gas volume is required, compromising system compactness. Combining conventional ECD architectures with a bootstrap reservoir offers a greater degree of freedom in system design, which enables downsizing or avoidance of the gas volume. Another potential benefit by including a bootstrap reservoir is the possibility of elevating the backpressure of the ECD thus enhancing drive stiffness, expanding the application range and market acceptance. Based on an open analysis of the solution space occurring when introducing a bootstrap reservoir, three system architectures are selected for a conceptual study. The results show that the downsizing potential is strongly dependent on the maximum friction force and the area ratio of the bootstrap reservoir pistons, while a linear analysis reveals that for some system architectures the bootstrap reservoir may severely influence the system dynamics. Simulation results confirm the functionality of the proposed system architectures, and show that a potential for downsizing/avoiding the gas volume, as well as increasing the ECD stiffness is present.
|
Page generated in 0.0695 seconds