• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical Programs with Vanishing Constraints / Optimierungsprobleme mit \'vanishing constraints\'

Hoheisel, Tim January 2009 (has links) (PDF)
A new class of optimization problems name 'mathematical programs with vanishing constraints (MPVCs)' is considered. MPVCs are on the one hand very challenging from a theoretical viewpoint, since standard constraint qualifications such as LICQ, MFCQ, or ACQ are most often violated, and hence, the Karush-Kuhn-Tucker conditions do not provide necessary optimality conditions off-hand. Thus, new CQs and the corresponding optimality conditions are investigated. On the other hand, MPVCs have important applications, e.g., in the field of topology optimization. Therefore, numerical algorithms for the solution of MPVCs are designed, investigated and tested for certain problems from truss-topology-optimization.
2

A duality approach to gap functions for variational inequalities and equilibrium problems

Lkhamsuren, Altangerel 03 August 2006 (has links) (PDF)
This work aims to investigate some applications of the conjugate duality for scalar and vector optimization problems to the construction of gap functions for variational inequalities and equilibrium problems. The basic idea of the approach is to reformulate variational inequalities and equilibrium problems into optimization problems depending on a fixed variable, which allows us to apply duality results from optimization problems. Based on some perturbations, first we consider the conjugate duality for scalar optimization. As applications, duality investigations for the convex partially separable optimization problem are discussed. Afterwards, we concentrate our attention on some applications of conjugate duality for convex optimization problems in finite and infinite-dimensional spaces to the construction of a gap function for variational inequalities and equilibrium problems. To verify the properties in the definition of a gap function weak and strong duality are used. The remainder of this thesis deals with the extension of this approach to vector variational inequalities and vector equilibrium problems. By using the perturbation functions in analogy to the scalar case, different dual problems for vector optimization and duality assertions for these problems are derived. This study allows us to propose some set-valued gap functions for the vector variational inequality. Finally, by applying the Fenchel duality on the basis of weak orderings, some variational principles for vector equilibrium problems are investigated.
3

A duality approach to gap functions for variational inequalities and equilibrium problems

Lkhamsuren, Altangerel 25 July 2006 (has links)
This work aims to investigate some applications of the conjugate duality for scalar and vector optimization problems to the construction of gap functions for variational inequalities and equilibrium problems. The basic idea of the approach is to reformulate variational inequalities and equilibrium problems into optimization problems depending on a fixed variable, which allows us to apply duality results from optimization problems. Based on some perturbations, first we consider the conjugate duality for scalar optimization. As applications, duality investigations for the convex partially separable optimization problem are discussed. Afterwards, we concentrate our attention on some applications of conjugate duality for convex optimization problems in finite and infinite-dimensional spaces to the construction of a gap function for variational inequalities and equilibrium problems. To verify the properties in the definition of a gap function weak and strong duality are used. The remainder of this thesis deals with the extension of this approach to vector variational inequalities and vector equilibrium problems. By using the perturbation functions in analogy to the scalar case, different dual problems for vector optimization and duality assertions for these problems are derived. This study allows us to propose some set-valued gap functions for the vector variational inequality. Finally, by applying the Fenchel duality on the basis of weak orderings, some variational principles for vector equilibrium problems are investigated.
4

Application of the Duality Theory

Lorenz, Nicole 15 August 2012 (has links) (PDF)
The aim of this thesis is to present new results concerning duality in scalar optimization. We show how the theory can be applied to optimization problems arising in the theory of risk measures, portfolio optimization and machine learning. First we give some notations and preliminaries we need within the thesis. After that we recall how the well-known Lagrange dual problem can be derived by using the general perturbation theory and give some generalized interior point regularity conditions used in the literature. Using these facts we consider some special scalar optimization problems having a composed objective function and geometric (and cone) constraints. We derive their duals, give strong duality results and optimality condition using some regularity conditions. Thus we complete and/or extend some results in the literature especially by using the mentioned regularity conditions, which are weaker than the classical ones. We further consider a scalar optimization problem having single chance constraints and a convex objective function. We also derive its dual, give a strong duality result and further consider a special case of this problem. Thus we show how the conjugate duality theory can be used for stochastic programming problems and extend some results given in the literature. In the third chapter of this thesis we consider convex risk and deviation measures. We present some more general measures than the ones given in the literature and derive formulas for their conjugate functions. Using these we calculate some dual representation formulas for the risk and deviation measures and correct some formulas in the literature. Finally we proof some subdifferential formulas for measures and risk functions by using the facts above. The generalized deviation measures we introduced in the previous chapter can be used to formulate some portfolio optimization problems we consider in the fourth chapter. Their duals, strong duality results and optimality conditions are derived by using the general theory and the conjugate functions, respectively, given in the second and third chapter. Analogous calculations are done for a portfolio optimization problem having single chance constraints using the general theory given in the second chapter. Thus we give an application of the duality theory in the well-developed field of portfolio optimization. We close this thesis by considering a general Support Vector Machines problem and derive its dual using the conjugate duality theory. We give a strong duality result and necessary as well as sufficient optimality conditions. By considering different cost functions we get problems for Support Vector Regression and Support Vector Classification. We extend the results given in the literature by dropping the assumption of invertibility of the kernel matrix. We use a cost function that generalizes the well-known Vapnik's ε-insensitive loss and consider the optimization problems that arise by using this. We show how the general theory can be applied for a real data set, especially we predict the concrete compressive strength by using a special Support Vector Regression problem.
5

Application of the Duality Theory: New Possibilities within the Theory of Risk Measures, Portfolio Optimization and Machine Learning

Lorenz, Nicole 28 June 2012 (has links)
The aim of this thesis is to present new results concerning duality in scalar optimization. We show how the theory can be applied to optimization problems arising in the theory of risk measures, portfolio optimization and machine learning. First we give some notations and preliminaries we need within the thesis. After that we recall how the well-known Lagrange dual problem can be derived by using the general perturbation theory and give some generalized interior point regularity conditions used in the literature. Using these facts we consider some special scalar optimization problems having a composed objective function and geometric (and cone) constraints. We derive their duals, give strong duality results and optimality condition using some regularity conditions. Thus we complete and/or extend some results in the literature especially by using the mentioned regularity conditions, which are weaker than the classical ones. We further consider a scalar optimization problem having single chance constraints and a convex objective function. We also derive its dual, give a strong duality result and further consider a special case of this problem. Thus we show how the conjugate duality theory can be used for stochastic programming problems and extend some results given in the literature. In the third chapter of this thesis we consider convex risk and deviation measures. We present some more general measures than the ones given in the literature and derive formulas for their conjugate functions. Using these we calculate some dual representation formulas for the risk and deviation measures and correct some formulas in the literature. Finally we proof some subdifferential formulas for measures and risk functions by using the facts above. The generalized deviation measures we introduced in the previous chapter can be used to formulate some portfolio optimization problems we consider in the fourth chapter. Their duals, strong duality results and optimality conditions are derived by using the general theory and the conjugate functions, respectively, given in the second and third chapter. Analogous calculations are done for a portfolio optimization problem having single chance constraints using the general theory given in the second chapter. Thus we give an application of the duality theory in the well-developed field of portfolio optimization. We close this thesis by considering a general Support Vector Machines problem and derive its dual using the conjugate duality theory. We give a strong duality result and necessary as well as sufficient optimality conditions. By considering different cost functions we get problems for Support Vector Regression and Support Vector Classification. We extend the results given in the literature by dropping the assumption of invertibility of the kernel matrix. We use a cost function that generalizes the well-known Vapnik's ε-insensitive loss and consider the optimization problems that arise by using this. We show how the general theory can be applied for a real data set, especially we predict the concrete compressive strength by using a special Support Vector Regression problem.

Page generated in 0.0565 seconds