• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 9
  • 6
  • Tagged with
  • 28
  • 15
  • 12
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Untersuchungen zum Ladungsträgertransport in multikristallinem Silizium

Seren, Sven. January 2002 (has links)
Konstanz, Univ., Diplomarb., 2002.
12

Zur kinetischen Stabilität von nanokristallinem Maghemit

Schimanke, Guido Torsten. Unknown Date (has links)
Techn. Universiẗat, Diss., 2001--Darmstadt.
13

Modeling and characterization of polycrystalline silicon for solar cells and microelectronics

Taretto, Kurt R. Unknown Date (has links) (PDF)
University, Diss., 2003--Stuttgart.
14

Einfluss der Korngefüge industriell hergestellter mc- Siliziumblöcke auf die rekombinationsaktiven Kristalldefekte und auf die Solarzelleneffizienz

Lehmann, Toni 26 May 2016 (has links) (PDF)
The efficiency of multicrystalline (mc) silicon solar cells depends strongly on the fraction of recombination active crystal defects. This work focuses on a systematic analysis of how the area fraction of recombination active crystal defects and thus the solar cell efficiency is af-fected by the grain structure of mc-silicon wafers, i.e. grain size, grain orientation and type of the grain boundaries between adjacent grains. For that purpose a new characterization method was developed which allows the measurement of the grain orientation and grain boundary type of full 156x156 mm² mc-silicon wafers. The results of the grain structure analysis were correlated with the etch pit density, the recombination active area fraction measured by photo-luminescence imaging, and the solar cell efficiency in order to quantify the most important features of the grain structure, which were relevant to obtain high quality mc-silicon wafer material. For the determination of the grain orientation and grain boundary type two metrology sys-tems were combined. The so-called grain detector determines the geometrical data of each grain (size and form) by a reflectivity measurement. Afterwards the wafer with the geomet-rical information of all grains is transferred into the so-called Laue Scanner. This system irra-diates each grain larger 3 mm² with white x-rays and creates a backscatter diffraction pattern (Laue pattern) for each grain. From this Laue pattern the grain orientation and the grain boundary type of neighboured grains is calculated and statistically analysed in combination with the geometrical data of the grain detector. In this work the grain structure of twelve industrially grown mc-silicon bricks, which were produced by different manufacturers, and two laboratory grown bricks were investigated. Seven of these bricks show a fine grain structure. This material named class F is considered to be typical for so-called High Performance Multi (HPM) silicon. The other bricks show a coarse-grained structure. This grain structure was called class G and corresponds to the con-ventional mc-silicon material. The results show that the grain structures of the start of the crystallization process differ sig-nificantly between class F and class G. The class F mc-silicon wafers have a uniform initial grain size (characterized by coefficient of variation CV¬KG < 2.5) and grain orientation (charac-terized by coefficient of variation CVKO < 1.5) distribution with a small mean grain size (< 4 mm²) and a high length fraction of random grain boundaries (> 60 %) in comparison to the class G wafers. Despite the totally different initial grain structure for the class F and class G bricks, the grain structure of the wafers which represent the end of the crystallization process is more or less comparable. It can be concluded that the development of the grain structure along the crystal height of the class F bricks is driven by an energy minimization due to the surface energy and the grain boundary energy, that means that the share of (111) oriented grains having the lowest surface energy and the share of ∑3 grain boundaries having the lowest interface energy increase from the start of crystallization to the end. This phenomenon could not be observed for the class G bricks, which show a decreasing ∑3 length fraction and a decreasing area fraction of {111} oriented grains. This energetically unfavourable grain structure development is not clear so far but it means another kind of energy minimization effect must exist within class G. This could be for instance the formation of dislocations. The grain structure investigations show clearly that especially the initially fine-grained struc-ture of the class F bricks, i.e. at the start of crystallization, influences beneficially the area fraction of recombination active defects and the solar cell efficiency subsequently. This ob-servation can be explained as follows. Reduced dislocation cluster formation: • The small grain sizes in combination with the low length fraction of ∑3 grain bounda-ries capture the dislocations within a grain. Dislocations are not able to move across the grain boundaries which have not the ∑3-type within moderate stress and tempera-ture fields. This prohibits the formation and expansion of large dislocation cluster. • The previously described energetically driven grain selection and the continuously in-creasing grain size from bottom to top leads to an overgrowth of grains. This means that also dislocated grains will disappear which also prohibits the formation of large dislocation cluster. Reduced possibility of dislocation formation: • Compared to the class G bricks the area fraction of {111} oriented grains is reduced. Therefore, the possibility of the formation of dislocations is reduced, because they would be activated first in {111} oriented grains taking the Schmidt factor in account which is lowest for {111} oriented grains. After the dislocation generation within a {111} oriented grain, the dislocation can move forward on 3 of 4 possible {111} slip planes which have an angle of 19.5° with regard to the growth direction. No other ori-entation has more slip planes for the dislocation movement which have an angle smaller 20° with regard to the growth direction. These arguments in combination with the high reproducibility of the characteristic initial class F structure can explain the observed low recombination active area fraction from start to end of crystallization which was smaller 5 % and especially the low variation of 2 % of the electrical active wafer area in between the class F bricks. One can also easily explain the higher recombination active area fraction up to 14 % and the large variation of 10 % between the class G bricks due to the obtained grain structure data. These differences in the recombination active area fractions are reflected in the solar cell efficiency which is 0.4 % higher for the class F bricks compared to the class G bricks. In consideration of the above mentioned reasons it is not beneficial for the industrial ingot production technology to increase the ingot height further, due to the fact that the advanta-geous initial grain structure properties of class F bricks disappear with increasing crystal height.
15

Grain boundary networks in RABiTS based YBa2Cu3O7[-delta] coated conductors / Korngrenzennetzwerke in YBa2Cu3O7[-delta]-Bandleitern auf RABiT Substraten

Fernández Gómez-Recuero, Laura 19 March 2004 (has links) (PDF)
This thesis deals with the transport properties and critical current limitations found in YBa2Cu3O7[-delta] coated conductors prepared by the &amp;quot;rolling assisted biaxially textured substrate&amp;quot; (RABiTS) approach. For this purpose a buffer layer system composed of CeO2 and yttria-stabilised zirconia, and subsequently a YBa2Cu3O7[-delta] film were epitaxially grown by pulsed laser deposition on a biaxially textured metallic substrate. The resulting texture of the YBa2Cu3O7[-delta] film is crucial for the achievement of high critical current densities. A propagation of the granular structure of the metallic substrate into the YBa2Cu3O7[-delta] film was detected, which leads to the formation of a YBa2Cu3O7[-delta] grain boundary network and limits the critical current density of the samples. In order to study this limitation, critical current measurements were performed on the prepared samples at different temperatures and magnetic fields, detecting a transition between intergrain and intragrain current limitation that occurs at the so-called crossover magnetic field. The crossover magnetic field was found to shift to lower values as the temperature was increased. It was concluded that the grain boundary network limits the critical current density of the YBa2Cu3O7[-delta] coated conductor only for magnetic fields below the crossover field. / In der vorliegenden Dissertation werden Transporteigenschaften und die Limitierung der kritischen Stromdichte von YBa2Cu3O7[-delta] Bandleitern untersucht. Für die Präparation wird das epitaktische Schichtwachstum auf biaxial texturierten Substraten genutzt (RABiTS-Technik). Dabei wird mittels gepulster Laserdeposition eine Pufferschicht aus CeO2 und Yttrium-stabilisiertem Zirkonoxyd (YSZ) und anschließend eine YBa2Cu3O7[-delta] Schicht epitaktisch auf ein Substrat aufgebracht. Die resultierende biaxiale Textur der YBa2Cu3O7[-delta]-Schicht spielt eine Hauptrolle, um möglichst hohe Stromdichten zu erreichen. Es zeigte sich, daß die granulare Struktur des Substrates in die YBa2Cu3O7[-delta]-Schicht übertragen wird und zur Ausbildung eines Korngrenzennetzwerkes führt, welches wiederum die zu erwartende kritische Stromdichte begrenzt. Um die Wirkung des Korngrenzennetzwerkes zu untersuchen, wurden kritische Ströme der gewachsenen Schichten in Abhängigkeit der Temperatur und des angelegten Magnetfeldes gemessen. Es stellte sich heraus, daß die Limitierung des Stroms bei schwachen Magnetfeldern zwischen den einzelnen Körnern bestimmend ist, die dann bei größeren Feldern einer Strombegrenzung innerhalb der Körner weicht. Das beide Bereiche trennende Magnetfeld wird als Übergangsfeld bezeichnet. Daraus kann geschlußfolgert werden, daß das Korngrenzennetzwerk von YBa2Cu3O7[-delta] Bandleitern den Strom nur für magnetische Felder unterhalb des Übergangsfeldes begrenzt.
16

Strombegrenzende Mechanismen YBa2Cu3O7-[delta]-Dünnschichten und -Quasimultilagen

Hänisch, Jens 01 October 2005 (has links) (PDF)
In this work, electrical transport properties and the maximum current carrying capability of YBa2Cu3O7-[delta] thin films and so called quasi-multilayers are investigated. These samples are prepared with pulsed laser deposition on single-crystalline substrates (SrTiO3) as well as on biaxially textured Ni tapes. The critical current density of coated conductors is limited by small-angle grain boundaries in low magnetic fields, but by the intra-grain pinning properties in higher magnetic fields. Accordingly, these investigations are divided into two parts: In the first part, the limitation of the critical current density by grain-boundaries and grain boundary networks is investigated with the main focus on the influence of geometrical factors such as the conductor width or the grain aspect ratio. In the second part, a possible enhancement of the critical current density due to different doping types (atomar doping using Zn and precipitate doping using BaMO3 where M is a transition metal) will be discussed. Here, not only the irreversibility field but also the pinning behaviour in very low magnetic fields is of interest to better understand the pinning mechanism of thin films. / In der vorliegenden Arbeit werden elektrische Transporteigenschaften und die maximale Stromtragfähigkeit von YBa2Cu3O7-[delta]-Dünnschichten und -Schichtsystemen, die mit Hilfe der gepulsten Laserdeposition sowohl auf einkristallinem Substrat, SrTiO3, als auch auf biaxial texturierten Ni-Bändern deponiert wurden, untersucht. Da in kleinen Magnetfeldern Kleinwinkelkorngrenzen die kritische Stromdichte in Bandleitern begrenzen, in höheren jedoch die Pinningeigenschaften der Körner, gliedern sich diese Untersuchungen in zwei Teile: Im ersten wird die Limitierung der kritischen Stromdichte jc durch Korngrenzen und Korngrenzennetzwerke näher untersucht, wobei besonders Geometrieeinflüsse, wie die Leiterbahnbreite oder das Aspektverhältnis der Körner, interessieren. Im zweiten wird eine mögliche Erhöhung der kritischen Stromdichte durch verschiedene Dotierungen (atomare Dotierung: Zn, Ausscheidungsdotierung: BaMO3, M Metall) erörtert. Dabei ist nicht nur das Irreversibilitätsfeld interessant, sondern auch das Pinningverhalten in sehr kleinen Magnetfeldern, da so die Pinningmechanismen in Dünnschichten besser verstanden werden können.
17

Diskontinuumsmechanische Modellierung von Salzgesteinen

Knauth, Markus 02 December 2019 (has links)
Auf mikromechanischer Ebene stellen Salzgesteine ein Diskontinuum aus unregelmäßig geformten Salzkristallen dar, die entlang ihrer Korngrenzen miteinander wechselwirken. Im Rahmen dieser Arbeit wurde ein Modellierungsansatz für Salzgesteine basierend auf der diskontinuumsmechanischen Berechnungsmethode unter Verwendung von Voronoi-Triangulationen entwickelt und validiert, wobei die Grundidee darin bestand, dass diese Korngrenzen als intrinsisches Schwächeflächennetzwerk wirken und dabei die hauptsächlichen Träger der Schädigungsentwicklung im Festkörper sind. Neben mechanischen Beanspruchungen können diese auch durch hydraulichen Druck geöffnet werden und somit als potentiellen Fließwege für eindringende Fluide agieren, weshalb dieser Ansatz insbesondere für die Bewertung der Integrität von Salinarbarrieren im konventionellen Salzbergbau, bei der Kavernenspeicherung und Endlagerung in Salzformationen geeignet ist. Erstmalig wurde darüber hinaus ein phänomenologisches Verheilungsmodell entwickelt und implementiert, dass den zeitabhängigen Wiederaufbau kohäsiver Kräfte auf Korngrenzen unter Druckbelastung abbildet. Der vorgestellte Ansatz wurde durch die Nachrechnung zahlreicher experimenteller Versuche bezüglich seiner hydro-mechanischen Plausibilität und Leistungsfähigkeit validiert. Daraufhin wurden praktische Anwendungen untersucht, in denen mit zunehmender Komplexität die Kopplung mechanischer, hydraulischer und thermischer Effekte modelliert wurde.
18

Strombegrenzende Mechanismen YBa2Cu3O7-[delta]-Dünnschichten und -Quasimultilagen

Hänisch, Jens 20 October 2005 (has links)
In this work, electrical transport properties and the maximum current carrying capability of YBa2Cu3O7-[delta] thin films and so called quasi-multilayers are investigated. These samples are prepared with pulsed laser deposition on single-crystalline substrates (SrTiO3) as well as on biaxially textured Ni tapes. The critical current density of coated conductors is limited by small-angle grain boundaries in low magnetic fields, but by the intra-grain pinning properties in higher magnetic fields. Accordingly, these investigations are divided into two parts: In the first part, the limitation of the critical current density by grain-boundaries and grain boundary networks is investigated with the main focus on the influence of geometrical factors such as the conductor width or the grain aspect ratio. In the second part, a possible enhancement of the critical current density due to different doping types (atomar doping using Zn and precipitate doping using BaMO3 where M is a transition metal) will be discussed. Here, not only the irreversibility field but also the pinning behaviour in very low magnetic fields is of interest to better understand the pinning mechanism of thin films. / In der vorliegenden Arbeit werden elektrische Transporteigenschaften und die maximale Stromtragfähigkeit von YBa2Cu3O7-[delta]-Dünnschichten und -Schichtsystemen, die mit Hilfe der gepulsten Laserdeposition sowohl auf einkristallinem Substrat, SrTiO3, als auch auf biaxial texturierten Ni-Bändern deponiert wurden, untersucht. Da in kleinen Magnetfeldern Kleinwinkelkorngrenzen die kritische Stromdichte in Bandleitern begrenzen, in höheren jedoch die Pinningeigenschaften der Körner, gliedern sich diese Untersuchungen in zwei Teile: Im ersten wird die Limitierung der kritischen Stromdichte jc durch Korngrenzen und Korngrenzennetzwerke näher untersucht, wobei besonders Geometrieeinflüsse, wie die Leiterbahnbreite oder das Aspektverhältnis der Körner, interessieren. Im zweiten wird eine mögliche Erhöhung der kritischen Stromdichte durch verschiedene Dotierungen (atomare Dotierung: Zn, Ausscheidungsdotierung: BaMO3, M Metall) erörtert. Dabei ist nicht nur das Irreversibilitätsfeld interessant, sondern auch das Pinningverhalten in sehr kleinen Magnetfeldern, da so die Pinningmechanismen in Dünnschichten besser verstanden werden können.
19

Wechselwirkung von Kupfer mit ausgedehnten Defekten in multikristallinem Silicium und Einfluss auf die Rekombinationseigenschaften

Kreßner-Kiel, Denise 22 September 2017 (has links) (PDF)
Die Rekombinationsaktivität von Versetzungen und Korngrenzen in multikristallinem Silicium wird von Kupfer und anderen metallischen Verunreinigungen wie Eisen mitbestimmt. Das Hauptziel der Arbeit war es, die Verteilung von Kupfer und dessen Wirkung auf die Rekombinationsaktivität von Versetzungen und Korngrenzen genauer zu untersuchen. Dazu wurden optische und elektrische Untersuchungen an gezielt mit Metallen verunreinigten Modellmaterialien durchgeführt. Nicht alle Versetzungen sind rekombinationsaktiv. Es konnte gezeigt werden, dass der Anteil rekombinationsaktiver Versetzungen am Gesamtinventar und die Hintergrunddiffusionslänge von der Verunreinigung mit Metallen abhängig sind. Ergebnisse von Untersuchungen an Proben, die Diffusionsexperimenten unterzogen wurden, deuten auf unterschiedliches Ausscheidungsverhalten von Kupfer und Eisen hin sowie auf Wechselwirkungen mit Versetzungen und Korngrenzen, die mit der Diffusionstemperatur und den Abkühlbedingungen in Zusammenhang stehen.
20

Einfluss der Korngefüge industriell hergestellter mc- Siliziumblöcke auf die rekombinationsaktiven Kristalldefekte und auf die Solarzelleneffizienz

Lehmann, Toni 29 April 2016 (has links)
The efficiency of multicrystalline (mc) silicon solar cells depends strongly on the fraction of recombination active crystal defects. This work focuses on a systematic analysis of how the area fraction of recombination active crystal defects and thus the solar cell efficiency is af-fected by the grain structure of mc-silicon wafers, i.e. grain size, grain orientation and type of the grain boundaries between adjacent grains. For that purpose a new characterization method was developed which allows the measurement of the grain orientation and grain boundary type of full 156x156 mm² mc-silicon wafers. The results of the grain structure analysis were correlated with the etch pit density, the recombination active area fraction measured by photo-luminescence imaging, and the solar cell efficiency in order to quantify the most important features of the grain structure, which were relevant to obtain high quality mc-silicon wafer material. For the determination of the grain orientation and grain boundary type two metrology sys-tems were combined. The so-called grain detector determines the geometrical data of each grain (size and form) by a reflectivity measurement. Afterwards the wafer with the geomet-rical information of all grains is transferred into the so-called Laue Scanner. This system irra-diates each grain larger 3 mm² with white x-rays and creates a backscatter diffraction pattern (Laue pattern) for each grain. From this Laue pattern the grain orientation and the grain boundary type of neighboured grains is calculated and statistically analysed in combination with the geometrical data of the grain detector. In this work the grain structure of twelve industrially grown mc-silicon bricks, which were produced by different manufacturers, and two laboratory grown bricks were investigated. Seven of these bricks show a fine grain structure. This material named class F is considered to be typical for so-called High Performance Multi (HPM) silicon. The other bricks show a coarse-grained structure. This grain structure was called class G and corresponds to the con-ventional mc-silicon material. The results show that the grain structures of the start of the crystallization process differ sig-nificantly between class F and class G. The class F mc-silicon wafers have a uniform initial grain size (characterized by coefficient of variation CV¬KG < 2.5) and grain orientation (charac-terized by coefficient of variation CVKO < 1.5) distribution with a small mean grain size (< 4 mm²) and a high length fraction of random grain boundaries (> 60 %) in comparison to the class G wafers. Despite the totally different initial grain structure for the class F and class G bricks, the grain structure of the wafers which represent the end of the crystallization process is more or less comparable. It can be concluded that the development of the grain structure along the crystal height of the class F bricks is driven by an energy minimization due to the surface energy and the grain boundary energy, that means that the share of (111) oriented grains having the lowest surface energy and the share of ∑3 grain boundaries having the lowest interface energy increase from the start of crystallization to the end. This phenomenon could not be observed for the class G bricks, which show a decreasing ∑3 length fraction and a decreasing area fraction of {111} oriented grains. This energetically unfavourable grain structure development is not clear so far but it means another kind of energy minimization effect must exist within class G. This could be for instance the formation of dislocations. The grain structure investigations show clearly that especially the initially fine-grained struc-ture of the class F bricks, i.e. at the start of crystallization, influences beneficially the area fraction of recombination active defects and the solar cell efficiency subsequently. This ob-servation can be explained as follows. Reduced dislocation cluster formation: • The small grain sizes in combination with the low length fraction of ∑3 grain bounda-ries capture the dislocations within a grain. Dislocations are not able to move across the grain boundaries which have not the ∑3-type within moderate stress and tempera-ture fields. This prohibits the formation and expansion of large dislocation cluster. • The previously described energetically driven grain selection and the continuously in-creasing grain size from bottom to top leads to an overgrowth of grains. This means that also dislocated grains will disappear which also prohibits the formation of large dislocation cluster. Reduced possibility of dislocation formation: • Compared to the class G bricks the area fraction of {111} oriented grains is reduced. Therefore, the possibility of the formation of dislocations is reduced, because they would be activated first in {111} oriented grains taking the Schmidt factor in account which is lowest for {111} oriented grains. After the dislocation generation within a {111} oriented grain, the dislocation can move forward on 3 of 4 possible {111} slip planes which have an angle of 19.5° with regard to the growth direction. No other ori-entation has more slip planes for the dislocation movement which have an angle smaller 20° with regard to the growth direction. These arguments in combination with the high reproducibility of the characteristic initial class F structure can explain the observed low recombination active area fraction from start to end of crystallization which was smaller 5 % and especially the low variation of 2 % of the electrical active wafer area in between the class F bricks. One can also easily explain the higher recombination active area fraction up to 14 % and the large variation of 10 % between the class G bricks due to the obtained grain structure data. These differences in the recombination active area fractions are reflected in the solar cell efficiency which is 0.4 % higher for the class F bricks compared to the class G bricks. In consideration of the above mentioned reasons it is not beneficial for the industrial ingot production technology to increase the ingot height further, due to the fact that the advanta-geous initial grain structure properties of class F bricks disappear with increasing crystal height.:Abstract 1. Einleitung 1.1 Photovoltaik 1.2 Stand der Technik 1.2.1 Blockerstarrung von multikristallinem Silizium 1.2.2 Kornorientierungsbestimmung 1.3 Zielsetzung und Gliederung der Arbeit 2. Grundlagen 2.1 Silizium 2.1.1 Elektrische Eigenschaften 2.1.2 Oberflächenenergien des Siliziums 2.2 Kristalldefekte in multikristallinem Silizium 2.2.1 Versetzungen 2.2.2 Korngrenzen 2.2.3 Wechselwirkung zwischen Versetzungen und Korngrenzen 3. Mess- und Auswertemethodik 3.1 Detektion der Körner 3.1.1 Aufbau und Funktionsweise 3.1.2 Definition der Kenngrößen 3.1.3 Fehlerbetrachtung 3.2 Detektion der Kornorientierungen und Korngrenztypen 3.2.1 Theoretische Betrachtung 3.2.2 Aufbau und Funktionsweise 3.2.3 Definition der Kenngrößen 3.2.4 Fehlerbetrachtung 3.3 Detektion der Ätzgrubendichte 3.3.1 Aufbau und Funktionsweise 3.3.2 Definition der Kenngrößen 3.3.3 Fehlerbetrachtung 3.4 Detektion des rekombinationsaktiven Flächenanteils 3.4.1 Aufbau und Funktionsweise 3.4.2 Definition der Kenngrößen 3.4.3 Fehlerbetrachtung 3.5 Korrelation der rekombinationsaktiven Kristalldefekte mit der Kornorientierung 4. Probeninformation 5. Ergebnisteil 5.1 Korngrößenverteilung 5.1.1 Säulenklassifizierung 5.1.2 Klasse F Säulen 5.1.3 Klasse G Säulen 5.2 Kornorientierungsverteilung 5.2.1 Klasse F Säulen 5.2.2 Klasse G Säulen 5.3 Korngrenztypverteilung 5.3.1 Klasse F Säulen 5.3.2 Klasse G Säulen 5.4 Ätzgrubendichte 5.4.1 Klasse F Säulen 5.4.2 Klasse G Säulen 5.5 Rekombinationsaktiver Flächenanteil 5.5.1 Klasse F Säulen 5.5.2 Klasse G Säulen 5.6 Korrelation der Ergebnisse 5.6.1 Mittlere Korngröße und Variationskoeffizient vs. rekombinationsaktiver Flächenanteil 5.6.2 Korngrenztyplängenanteil vs. rekombinationsaktiver Flächenanteil 5.6.3 Kornorientierung vs. rekombinationsaktiver Flächenanteil 5.6.4 Ätzgrubendichte vs. rekombinationsaktiver Flächenanteil 6. Diskussion der Ergebnisse 6.1 Einfluss des Kristallzüchtungsprozesses auf die Korngrößen-, die Kornorientierungs- und Korngrenztypverteilung 6.2 Einfluss der Kornstruktur auf den elektrisch aktiven Defektanteil 6.3 Einfluss der Kornorientierung auf den elektrisch aktiven Defektanteil 6.4 Einfluss der Kornstruktur auf die elektrische Aktivierung von Versetzungsclustern 6.5 Einfluss der Verunreinigungen auf die Solarzelleneffizienz 7. Zusammenfassung und Ausblick Verwendete Abkürzungen und Symbole Literaturverzeichnis Veröffentlichungen Betreute studentische Arbeiten Danksagung

Page generated in 0.345 seconds