1 |
A surface plasmon resonance spectrometer constructed in a Kretschmann configurationMusick, Kevin 26 May 2011 (has links)
No description available.
|
2 |
Numerická evoluce černoděrových prostoročasů / Numerical evolution of black-hole spacetimesKhirnov, Anton January 2013 (has links)
吀e so-called "trumpet" initial data has recently received mu挀 a琀ention as a potential candidate for the natural black hole initial data to be used in 3+1 numerical relativity simulations with 1+log foliation. In this work we first derive a variant of the maximal trumpet initial data that is made to move on the numerical grid by the means of a Lorentz boost and write a numerical code that constructs this boosted trumpet initial data. We also write a numerical code for calculating the Krets挀mann scalar from the 3+1 variables, to be used in analysing the data from our simulations. With the help of those two codes, we study the behaviour of the boosted trumpet initial data when evolved with the BSSN formulation of the Einstein equations, using 1+log slicing and the Γ-driver shi昀 condition.
|
3 |
Surface plasmon resonance study of the purple gold (AuAl₂) intermetallic, pH-responsive fluorescence gold nanoparticles, and gold nanosphere assemblySamaimongkol, Panupon 31 July 2018 (has links)
In this dissertation, I have verified that the striking purple color of the intermetallic compound AuAl₂, also known as purple gold, originates from surface plasmons (SPs). This contrasts to a previous assumption that this color is due to an interband absorption transition. The existence of SPs was demonstrated by launching them in thin AuAl2 films in the Kretschmann configuration, which enables us to measure the SP dispersion relation. I observed that the SP energy in thin films of purple gold is around 2.1 eV, comparable to previous work on the dielectric function of this material. Furthermore, SP sensing using AuAl₂ also shows the ability to measure the change in the refractive index of standard sucrose solution. AuAl₂ in nanoparticle form is also discussed in terms of plasmonic applications, where Mie scattering theory predicts that the particle bears nearly uniform absorption over the entire visible spectrum with an order magnitude higher than a lightabsorbing carbonaceous particle. The second topic of this dissertation focuses on plasmon enhanced fluorescence in gold nanoparticles (Au NPs). Here, I investigated the distance-dependent fluorescence emission of rhodamine green 110 fluorophores from Au NPs with tunable spacers. These spacers consist of polyelectrolyte multilayers (PEMs) consisting of poly(allylamine hydrochloride) and poly(styrene sulfonate) assembled at pH 8.4. The distance between Au NPs and fluorophores was varied by changing the ambient pH from 3 to 10 and back, which causes the swelling and deswelling of PEM spacer. Maximum fluorescence intensity with 4.0-fold enhancement was observed with 7-layer coated Au NPs at ambient pH 10 referenced to pH 3. The last topic of this dissertation examines a novel approach to assemble nanoparticles, in particular, dimers of gold nanospheres (NSs). 16 nm and 60 nm diameter NSs were connected using photocleavable molecules as linkers. I showed that the orientation of the dimers can be controlled with the polarization of UV illumination that cleaves the linkers, making dipolar patches. This type of assembly provides a simple method with potential applications in multiple contexts, such as biomedicine and nanorobotics. / PHD / This dissertation covers three related topics. The first is an investigation of the optical properties of the unusually colored purple gold, which is a blend of gold and aluminum with the chemical formula is AuAl₂. This compound is interesting in that the origin of this color is different from most other metals. In the case of gold, for example, the metal gold is yellow color by absorbing the blue component from white light, leaving behind yellow color reflected light. The blue light is absorbed by electrons that change their state from a lower energy to a higher one. In purple gold, the color results from a different phenomenon known as “surface plasmons.” Surface plasmons are waves consisting of many electrons that move back and forth near an interface between a metal and an electrical insulator. The energy of surface plasmons in purple gold is low and corresponds to the purple color in this compound. Recently, published theoretical work supports the possibility of surface plasmons in purple gold. In this dissertation, I experimentally verify the presence of surface plasmons in purple gold. To launch surface plasmons, light was reflected off of a purple gold film deposited on the hypotenuse of a prism with varying angles of incidence. Surface plasmons can be observed by the sudden dimming of reflected light. From this, I was able to extract the surface plasmon dispersion relation, which is the relation between the inverse of the wavelength and the energy of the surface plasmons. In addition, I computed the light absorption properties of purple v gold when it is used in a nanoparticle form. The computational result showed that small purple gold nanoparticles absorb light very well, which may be useful in photothermal cancer therapy and solar steam generation.
The second dissertation topic comprises a study of fluorescent molecules. These are compounds that reemit light with a different and redder color than the color of the light that illuminates them. In this experiment, green fluorescent molecules were placed near the surface of gold nanoparticles to observe how the brightness of the light emission is affected by the distance between the molecule and the metal. The underlying mechanism is based on localized surface plasmon resonances in gold nanoparticles. Localized surface plasmon resonances are waves consisting of many electrons that oscillate inside the particle, and they only occur when light at certain frequency illuminate the particle. On the resonance, the particle also exhibits the brighter light around the particle’s surface but the dimmer light away from the particle’s surface. The light enhancement from the particle can change the light emission of the fluorescent molecules. If the fluorescent molecules were placed in the range of localized surface plasmon resonances, the light emission is increased owing to the brighter light from the particle. However, if the fluorescent molecules were placed further away from the range of localized surface plasmon resonances, the light emission is decreased owing to the dimmer light from the particle. The distance between the surface of gold nanoparticle and the fluorescent molecules was varied by wrapping the gold particles with ultra-thin films of different plastic polymers before attaching fluorescent molecules to the surface of the films. These polymer films have the property that they swell and shrink when the acidity and basicity of the solution of gold particles changes, which allows me to vary the distance between the gold particles and fluorescent molecules. The results showed that the observed light gets dimmer when the solution is more acidic. On the other hand, the brighter light is noticed when the solution is more basic, and this observation is repeatable many times. Moreover, my work differs from other published works vi in that the particles with the polymer films are more robust and stable than the other particles. This allows more design flexibility and suggests applications in biomedical or environmental research where the particles can be used to locally measure properties, such as acidity in confined spacers such as living cells. It may be possible to use this technique for tumor cells in our body or toxic pollutants in the air or water.
The last dissertation topic involves assembling nanoparticles to build them into larger structures. In this experiment, I fabricated particle dimers that consisted of two gold nanospheres of different sizes. They were attached together by using small molecules that are sensitive to ultraviolet (UV) light, where these molecules allow small gold nanospheres to be attached to large gold nanospheres only in those locations on the large nanospheres that have been illuminated with a sufficient amount of UV light. To achieve this alignment, UV light with a linear polarization (a specific electric field direction) was used to select the area on the large nanospheres where the UV light was particularly intense and therefore able to break the molecules, leaving positively charged surface patches on the spheres. This results in the electrostatic attraction between the positive patches on the large gold nanospheres and the negatively charged small gold nanospheres. With this method, I was able to make dimers of nanospheres in a preferred alignment by changing the polarization of UV light. The experimental results showed a good yield of dipolar patches, which allows multifunctional nanostructures with applications in nanomedicine, optical sensing, nanoelectronics, etc.
|
4 |
Fluorescência induzida por plasmons superficiais em corantesNOGUEIRA, Maxwell Aragão Marques January 2007 (has links)
Made available in DSpace on 2014-06-12T18:06:16Z (GMT). No. of bitstreams: 2
arquivo7713_1.pdf: 722814 bytes, checksum: 2e4a6c4e83b9b21d12bc70bea26edd8d (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2007 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Plasmons, oscilações coletivas de elétrons de condução, podem ter grande
influência sobre as propriedades ópticas de micro e nanoestruturas metálicas, e são de
grande interesse no desenvolvimento de dispositivos fotônicos. Neste trabalho, produzimos
filmes finos metálicos pelo método de evaporação à baixa pressão e, em seguida, fizemos a
sua caracterização por medidas de refletividade óptica. A partir daí, estudamos o
comportamento da emissão espontânea (fluorescência) induzida por plasmons superficiais
em interfaces metal-dielétrico. O sistema estudado era constituído por um corante
dissolvido em uma matriz polimérica pura ou contendo nanopartículas de prata ou de rutila.
A excitação de plasmons foi obtida pelo uso da técnica de reflexão total atenuada
(Configuração de Kretschmann-Raether), e foram utilizadas medidas de luminescência na
detecção de sinal de fluorescência induzida por plasmons superficiais. A intensidade da
fluorescência e sua largura de linha foram analisadas em função da intensidade de luz
incidente na amostra. Foi observado que, para altas intensidades, a forma de linha da
luminescência era modificada, indicando a ocorrência de emissão estimulada, mas com
baixa eficiência devido à baixa potência do laser utilizado
|
5 |
Applications of nonlinear magneto-photonics at the nanoscale / Application de la magneto-photonique non-linéaire à l'échelle nanométriqueTran, Ngoc Minh 13 December 2018 (has links)
La génération de seconde harmonique magnétique (mSHG pour magnetic Second Harmonic Generation) est un phénomène physique très sensible apparaissant grâce aux brisures de symétrie aux niveaux des surfaces et interfaces des structures métalliques magnétiques. Elle constitue donc un outil puissant pour explorer ce type d'interfaces et des nanostructures. Dans ce travail, nous nous intéressons aux couplages et interactions entre la mSHG et les ondes électromagnétiques pouvant se propager en surface des matériaux. Un intérêt spécifique est porté sur l’ excitation de (i) plasmon polaritons de surfaces (SPP) dans des films métalliques en structures multicouches, (ii) d'anomalies de diffraction (dîtes de Wood) dans des nanostructures métalliques périodiques. Pour étudier l'influence de l'excitation linéaire et non-linéaire des SPP sur la mSHG, l'intensité du signal réfléchi par génération de seconde harmonique (SH) et le contraste magnétique lié à ce signal ont été mesurés par la technique de l'effet Kerr magnéto-optique transverse (MOKE) en fonction de l'angle d'incidence. Via l'utilisation de sources lasers femtosecondes émettant dans le proche infrarouge, domaine spectral où les variations de la dispersion des SPP et du coefficient d'amortissement sont significatives, nous avons pu distinguer les différentes contributions linéaires et non-linéaires aux processus d'excitation. Ce travail de thèse a ainsi permis de montrer que l’accord de phase entre la mSHG et les ondes électromagnétiques de surface peuvent contribuer très efficacement à l'augmentation des signaux SH et de contraste magnétique associé. / Owing to surface and interface sensitivity, the magnetic Second Harmonic Generation (mSHG) represents a useful tool to probe magnetic interfaces and nanostructures. This work investigates the coupling and interaction of the mSHG with electromagnetic waves propagating along the surface. Two types of surface waves have been studied: (i) surface plasmon polaritons (SPP) at surfaces of metallic thin films and multilayers, and (ii) the diffraction anomaly at the surface of periodically arranged metallic nanostructures. To study influence of linear and nonlinear excitation of surface waves on the mSHG, the reflected second harmonic (SH) intensity and the magnetic SH contrast in the transverse magneto-optical geometry were measured as a function of the angle of incidence. The use of different femtosecond light sources in the near-infrared optical range, where the SPP dispersion and damping exhibit significant variations, made it possible to disentangle linear and nonlinear contributions to the excitation of surface waves. In this thesis, it is proven that phase-matching of the mSHG and surface electromagnetic waves can lead to the enhancement of both the SH yield and the nonlinear magneto-optical signal. These results are important for controlling of the nonlinear magneto-optical response and could impact the development of magnetic storage devices, label-free biosensors and nonlinear magneto-optical switches.
|
6 |
Estudio de las propiedades ópticas de materiales nanoestructurados y aplicacionesSantillán, Jesica María José 06 November 2013 (has links)
Durante los últimos años, ha adquirido importancia creciente el estudio de la interacción radiación visible-materia (fotónica), en la que la primera queda confinada a volúmenes de dimensiones mucho menores que la longitud de onda de la luz. El conocimiento de los procesos físicos que ocurren en dicha interacción permiten, entre otras cosas, el desarrollo de innumerables aplicaciones en diversos campos de la ciencia y la tecnología que abarcan desde la biomedicina hasta las telecomunicaciones.
La materia en escala nanométrica presenta propiedades ópticas, eléctricas, y magnéticas muy diferentes de las que posee en estado macroscópico. El estudio de las propiedades ópticas de estructuras nanométricas constituye un área de gran importancia no totalmente resuelta para el posible desarrollo de nuevos materiales y aplicaciones.
Esta Tesis combina un aspecto de desarrollo experimental y otro relacionado con el modelado teórico de las propiedades ópticas de nanoestructuras esféricas simples y núcleo-recubrimiento con el fin de complementar, reforzar y enriquecer la interpretación de los resultados obtenidos.
El desarrollo experimental está relacionado con la fabricación de partículas nanométricas y subnanométricas en medios líquidos por ablación láser de blancos sólidos de cobre y plata con pulsos ultracortos de Ti:Za, a diferentes energías y en distintos medios. Asimismo se obtienen espectros de extinción óptica y Raman a partir de las suspensiones coloidales generadas.
El aspecto teórico de esta Tesis abarca el modelado teórico de la función dieléctrica compleja de cobre y plata, y el estudio por separado del comportamiento de la contribución de los electrones libres y ligados considerando las modificaciones por tamaño para radios menores a 10 nm. Teniendo en cuenta estas correcciones, se analizan los coeficientes de extinción de ambos metales para distintos tamaños de partículas nanométricas y subnanométricas y diferentes estructuras en función de la longitud de onda.
A partir del ajuste de los espectros de extinción experimentales de las suspensiones coloidales generadas para ambos metales nobles, se determina la composición, estructura, configuración y distribución de tamaños.
Por otra parte, se presentan aplicaciones orientadas al diseño de dos tipos de sensores plasmónicos de oxígeno: uno de ellos, basado en espectroscopía de extinción óptica de nanopartícula aislada de plata, y el otro de películas de plata de espesor nanométrico fundamentado en la resonancia del polaritón plasmón superficial en la configuración de Kretschmann. Para ambos casos, la presencia de oxígeno se determina a través de la medición del espesor de óxido de plata crecido sobre la nanoestructura de plata.
Finalmente, mediante el análisis de determinados parámetros característicos del espectro de extinción de las nanopartículas aisladas de plata, se establece un protocolo sencillo para conocer el tamaño del radio del núcleo y el espesor del recubrimiento de óxido. Para el caso del sensor de película delgada de plata, el estudio del comportamiento de parámetros característicos como el mínimo de la reflectividad, ancho total a altura media y reflectividad a determinados ángulos de la multicapa de plata-óxido de plata para polarizaciones de onda p y s, permite establecer un protocolo de medición de reflectividad híbrido de Resonancia del Polaritón Plasmón Superficial - Acoplamiento del Modo de Guía de Onda Óptica para determinar y controlar in situ el espesor de la capa de óxido durante el proceso de crecimiento. / In recent years, it has become increasingly important the study the visible radiation-matter interaction field (photonics), wherein the former is confined to volume dimensions much smaller than the wavelength of light. Knowledge of the physical processes that occur in such interactions allow, among other things, the development of numerous applications in various fields of science and technology ranging from biomedicine to telecommunications.
Nanoscale material present optical, electrical, and magnetic properties very different from those observed in macroscopic state. The study of the optical properties of nanometric structures is an area of great importance not fully resolved for the possible development of new materials and applications.
This Thesis combines an experimental aspect and a theoretical modeling of the optical properties of simple and core-shell spherical nanostructures in order to complement, enhance and enrich the interpretation of the results.
Experimental development is related to the manufacture of nanometric and subnanometric particles in liquid media by laser ablation of solid copper and silver targets by ultrashort pulsed Ti:Sa laser, at different energies and different media. Likewise, optical extinction spectra and Raman spectra are obtained from the generated colloidal solutions.
The theoretical aspect of this Thesis covers theoretical modeling of complex dielectric function of copper and silver, and the separate study of the behavior of the contribution of free and bound electrons considering changes by size for radii smaller than 10 nm. Given these corrections, an analysis of the extinction coefficients of both metals for different nanometric and subnanometric particle sizes proceeds.
From the fit of the extinction spectra of the experimentally generated colloidal suspensions for both noble metals, composition, structure, configuration and size distribution could be determined.
Applications are oriented to the design of two types of plasmonic oxygen sensors: one based on optical extinction spectroscopy of single silver nanoparticle and the other is based on surface plasmon polariton resonance of nanometric thickness silver films based on Kretschmann configuration. For both cases, the presence of oxygen is determined by measuring the thickness of oxide grown on the silver nanostructure.
Finally, by analyzing certain characteristic parameters of the extinction spectrum of single silver nanoparticles, a simple core radius - shell thickness sizing protocol can be developed. In the case of thin-film silver sensor, studying the behavior of characteristic parameters such as minimum reflectivity, full width at half maximum and fixed-angle reflectivity of the multilayer silver-silver oxide p and s wave polarizations, protocol allows for a measurement of reflectivity hybrid Surface Plasmon Polariton Resonance - Coupling Mode Optical Waveguide to determine and monitor in situ the thickness of the oxide layer during the growth process.
|
Page generated in 0.0473 seconds