• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum mechanical modelling and electrochemical stability of sodium based glassy electrolyte for all-solid-state batteries

Falk, Carolina, Johansson, Linnéa January 2022 (has links)
Increasing energy demand draws attention to new materials for improving current energy storage technologies. Particular interest is directed at solid state batteries and glass Na3ClO electrolyte is a promising candidate. In this report we explore some of the properties of this new glass and its capabilities as a potential electrolyte for a solid-state battery. The two aims of the study were to model the amorphous structure of the glass using the stochastic quenching method based on density functional theory as well as assessing the electrochemical stability of it against a metallic sodium electrode. Using VASP, a computational code based on density functional theory, we performed calculations of two 150 atom supercells, where the atoms were moved around until the systems were relaxed to obtain two glass models and the resulting structures were analyzed and characterized. The characterization of the structures was made by means of partial radial distribution functions, angle distribution functions, coordination numbers and bond lengths, which showed that the two models are statistically equivalent and either one can be used for the stability assessment of the glass. The electrochemical stability was assessed by inserting an extra sodium atom in possible holes in the glass model and calculating the energetics of Na insertion in each of these holes. This was made for 30 different hole positions. The reduction potential indicates the stability of each hole and the results was plotted as an energy distribution. Two peaks in the energy distribution, located at positive and negative energies, indicating stable and unstable holes, respectively. This indicates that the amorphous structure of the glass allows Na ions to travel (unstable holes). The stable peak has a greater probability density, which indicates a stable electrolyte against sodium metal electrode, though a larger sampling of holes is required for better statistics. / Ökande krav på energiefterfrågan uppmärksammar nya material för att förbättra nuvarande energilagringsteknik, med fokus på solida batterier och glaset Na3ClO som en lovande kandidat för elektrolyt. I denna rapport undersöks några av egenskaperna för glaset samt möjligheten för denna att fungera som elektrolyt i ett solid-state batteri. Målen med projektet var att modellera den amorfa strukturen av glaset genom att använda stochastic quenching method som baseras på density functional theory samt undersöka den elektrokemiska stabiliteten mot en metallisk natrium elektrod. Genom användning av VASP, beräkningskoder baserade på density functional theroy, beräknades två superceller med 150 atomer vardera där atomerna flyttas runt tills dess att systemet var relaxerat och två modeller av glaset erhölls. Dessa var sedan visualiserades och karakteriserade. Karakterisering av strukturerna gjordes genom en partiella radiella fördelningsfunktioner, vinkel distrubitionsfunktioner, koordinationsnummer och bindningslängder. Detta visade på statistisk ekvivalens, vilket innebär att båda modellerna kan användas för vidare stabilitetsundersökning. Den elektrokemiska stabiliteten undersöktes genom att sätta in en extra natrium atom i möjliga hål i glas modellen samt beräkna dess energier av Na insättning i respektive hål. Detta gjordes för 30 olika positioner för hålen. Reduktionspotentialen indikerar stabiliteten för respektive hål, och resultatet plottades som en energidistribution. Två toppar i energidistributionen, lokaliserade vid positiva och negativa energier, indikerar stabila respeltive instabila hål. Detta indikerar på att den amorfa strukturen för glaset tillåter Na joner att färdas (instabila hål). Den stabila toppen har en större sannolikhetstäthet vilket indikerar på en stabil elektrolyt mot en metallisk natrium elektrod, men en större samling hål krävs för en bättre statistisk säkerhet.
2

Gossiping electrons : Strong decoherence from screening

Langueville, Felix January 2022 (has links)
In a strongly correlated material the localized electrons, typically the electrons in the 3d-orbitals, become entangled with each other through the Coulomb interaction. However, these electrons also interact with more mobile (itinerant) electrons in the s- and p-orbitals. The latter process called screening as it effectively reduces the strength of the interaction between the 3d-electrons. A less studied and often neglected effect of the screening is that it also entangles the 3d-electrons with the itinerant electrons, which is equivalent to a leakage of quantum information from the 3delectrons to the environment. This process leads to decoherence since it causes the 3d-electrons to effectively lose some of their quantum mechanical properties. But what does this mean for our understanding of strongly correlated materials and can this decoherence effect be of such magnitude that neglecting it may qualitatively affect the calculated material properties? This is the question this report tries to answer, but for a minimal impurity model consisting of an atom and a few surrounding bath orbitals. / I korrelerade atomer kan lokaliserade elektroner, som elektroner i 3d orbitaler, bli kvantmekaniskt sammanflätade med varandra genom coulomb-växelverkan. Dessa elektroner kan även växelverka med mer mobila elektroner, som elektroner i s- och p-orbitaler. Denna process kallas för skärmning eftersom den effektivt sätt reducerar styrkan på repulsionen mellan elektronerna i 3d-orbitalerna. En mindre känd och ofta ignorerad effekt från skärmningen är att elektronerna i 3d-orbitalerna blir kvantmekaniskt sammanflätade med de mobila elektronerna på ett irreversibelt sätt. Detta är ekvivalent med att information om d-elektronernas position läcker ut till omgivningen. Denna informationsläcka kallas för dekoherens eftersom den ledertill att d-elektronerna förlorar en del av sina kvantmekaniska egenskaper. Frågan blir således vad dekoherens kan ha för betydelse för starkt korrelerade materials egenskaper. Kan denna effekt vara av sådan magnitud att det ger oss en helt felaktig bild om den negligeras? Detta är vad denna rapport syftar till att svara på.
3

Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical Computer

Nyman, Peter January 2008 (has links)
<p>Utvecklandet av kvantdatorn är ett ytterst lovande projekt som kombinerar teoretisk och experimental kvantfysik, matematik, teori om kvantinformation och datalogi. Under första steget i utvecklandet av kvantdatorn låg huvudintresset på att skapa några algoritmer med framtida tillämpningar, klargöra grundläggande frågor och utveckla en experimentell teknologi för en leksakskvantdator som verkar på några kvantbitar. Då dominerade förväntningarna om snabba framsteg bland kvantforskare. Men det verkar som om dessa stora förväntningar inte har besannats helt. Många grundläggande och tekniska problem som dekoherens hos kvantbitarna och instabilitet i kvantstrukturen skapar redan vid ett litet antal register tvivel om en snabb utveckling av kvantdatorer som verkligen fungerar. Trots detta kan man inte förneka att stora framsteg gjorts inom kvantteknologin. Det råder givetvis ett stort gap mellan skapandet av en leksakskvantdator med 10-15 kvantregister och att t.ex. tillgodose de tekniska förutsättningarna för det projekt på 100 kvantregister som aviserades för några år sen i USA. Det är också uppenbart att svårigheterna ökar ickelinjärt med ökningen av antalet register. Därför är simulering av kvantdatorer i klassiska datorer en viktig del av kvantdatorprojektet. Självklart kan man inte förvänta sig att en kvantalgoritm skall lösa ett NP-problem i polynomisk tid i en klassisk dator. Detta är heller inte syftet med klassisk simulering. Den klassiska simuleringen av kvantdatorer kommer att täcka en del av gapet mellan den teoretiskt matematiska formuleringen av kvantmekaniken och ett förverkligande av en kvantdator. Ett av de viktigaste problemen i vetenskapen om kvantdatorn är att utveckla ett nytt symboliskt språk för kvantdatorerna och att anpassa redan existerande symboliska språk för klassiska datorer till kvantalgoritmer. Denna avhandling ägnas åt en anpassning av det symboliska språket Mathematica till kända kvantalgoritmer och motsvarande simulering i klassiska datorer. Konkret kommer vi att representera Simons algoritm, Deutsch-Joszas algoritm, Grovers algoritm, Shors algoritm och kvantfelrättande koder i det symboliska språket Mathematica. Vi använder samma stomme i alla dessa algoritmer. Denna stomme representerar de karaktäristiska egenskaperna i det symboliska språkets framställning av kvantdatorn och det är enkelt att inkludera denna stomme i framtida algoritmer.</p> / <p>Quantum computing is an extremely promising project combining theoretical and experimental quantum physics, mathematics, quantum information theory and computer science. At the first stage of development of quantum computing the main attention was paid to creating a few algorithms which might have applications in the future, clarifying fundamental questions and developing experimental technologies for toy quantum computers operating with a few quantum bits. At that time expectations of quick progress in the quantum computing project dominated in the quantum community. However, it seems that such high expectations were not totally justified. Numerous fundamental and technological problems such as the decoherence of quantum bits and the instability of quantum structures even with a small number of registers led to doubts about a quick development of really working quantum computers. Although it can not be denied that great progress had been made in quantum technologies, it is clear that there is still a huge gap between the creation of toy quantum computers with 10-15 quantum registers and, e.g., satisfying the technical conditions of the project of 100 quantum registers announced a few years ago in the USA. It is also evident that difficulties increase nonlinearly with an increasing number of registers. Therefore the simulation of quantum computations on classical computers became an important part of the quantum computing project. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. Classical simulation of quantum computations will cover part of the gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. One of the most important problems in "quantum computer science" is the development of new symbolic languages for quantum computing and the adaptation of existing symbolic languages for classical computing to quantum algorithms. The present thesis is devoted to the adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulation on the classical computer. Concretely we shall represent in the Mathematica symbolic language Simon's algorithm, the Deutsch-Josza algorithm, Grover's algorithm, Shor's algorithm and quantum error-correcting codes. We shall see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include this framework in future algorithms.</p>
4

Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical Computer

Nyman, Peter January 2008 (has links)
Utvecklandet av kvantdatorn är ett ytterst lovande projekt som kombinerar teoretisk och experimental kvantfysik, matematik, teori om kvantinformation och datalogi. Under första steget i utvecklandet av kvantdatorn låg huvudintresset på att skapa några algoritmer med framtida tillämpningar, klargöra grundläggande frågor och utveckla en experimentell teknologi för en leksakskvantdator som verkar på några kvantbitar. Då dominerade förväntningarna om snabba framsteg bland kvantforskare. Men det verkar som om dessa stora förväntningar inte har besannats helt. Många grundläggande och tekniska problem som dekoherens hos kvantbitarna och instabilitet i kvantstrukturen skapar redan vid ett litet antal register tvivel om en snabb utveckling av kvantdatorer som verkligen fungerar. Trots detta kan man inte förneka att stora framsteg gjorts inom kvantteknologin. Det råder givetvis ett stort gap mellan skapandet av en leksakskvantdator med 10-15 kvantregister och att t.ex. tillgodose de tekniska förutsättningarna för det projekt på 100 kvantregister som aviserades för några år sen i USA. Det är också uppenbart att svårigheterna ökar ickelinjärt med ökningen av antalet register. Därför är simulering av kvantdatorer i klassiska datorer en viktig del av kvantdatorprojektet. Självklart kan man inte förvänta sig att en kvantalgoritm skall lösa ett NP-problem i polynomisk tid i en klassisk dator. Detta är heller inte syftet med klassisk simulering. Den klassiska simuleringen av kvantdatorer kommer att täcka en del av gapet mellan den teoretiskt matematiska formuleringen av kvantmekaniken och ett förverkligande av en kvantdator. Ett av de viktigaste problemen i vetenskapen om kvantdatorn är att utveckla ett nytt symboliskt språk för kvantdatorerna och att anpassa redan existerande symboliska språk för klassiska datorer till kvantalgoritmer. Denna avhandling ägnas åt en anpassning av det symboliska språket Mathematica till kända kvantalgoritmer och motsvarande simulering i klassiska datorer. Konkret kommer vi att representera Simons algoritm, Deutsch-Joszas algoritm, Grovers algoritm, Shors algoritm och kvantfelrättande koder i det symboliska språket Mathematica. Vi använder samma stomme i alla dessa algoritmer. Denna stomme representerar de karaktäristiska egenskaperna i det symboliska språkets framställning av kvantdatorn och det är enkelt att inkludera denna stomme i framtida algoritmer. / Quantum computing is an extremely promising project combining theoretical and experimental quantum physics, mathematics, quantum information theory and computer science. At the first stage of development of quantum computing the main attention was paid to creating a few algorithms which might have applications in the future, clarifying fundamental questions and developing experimental technologies for toy quantum computers operating with a few quantum bits. At that time expectations of quick progress in the quantum computing project dominated in the quantum community. However, it seems that such high expectations were not totally justified. Numerous fundamental and technological problems such as the decoherence of quantum bits and the instability of quantum structures even with a small number of registers led to doubts about a quick development of really working quantum computers. Although it can not be denied that great progress had been made in quantum technologies, it is clear that there is still a huge gap between the creation of toy quantum computers with 10-15 quantum registers and, e.g., satisfying the technical conditions of the project of 100 quantum registers announced a few years ago in the USA. It is also evident that difficulties increase nonlinearly with an increasing number of registers. Therefore the simulation of quantum computations on classical computers became an important part of the quantum computing project. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. Classical simulation of quantum computations will cover part of the gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. One of the most important problems in "quantum computer science" is the development of new symbolic languages for quantum computing and the adaptation of existing symbolic languages for classical computing to quantum algorithms. The present thesis is devoted to the adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulation on the classical computer. Concretely we shall represent in the Mathematica symbolic language Simon's algorithm, the Deutsch-Josza algorithm, Grover's algorithm, Shor's algorithm and quantum error-correcting codes. We shall see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include this framework in future algorithms.

Page generated in 0.0404 seconds