Spelling suggestions: "subject:"kuantum errorcorrecting"" "subject:"kuantum errorcorrection""
1 |
Error Correcting CodesKosek, Peter M. January 2014 (has links)
No description available.
|
2 |
Accurate modeling of noise in quantum error correcting circuitsGutierrez Arguedas, Mauricio 07 January 2016 (has links)
A universal, scalable quantum computer will require the use of quantum error correction in order to achieve fault tolerance. The assessment and comparison of error-correcting strategies is performed by classical simulation. However, due to the prohibitive exponential scaling of general quantum circuits, simulations are restrained to specific subsets of quantum operations. This creates a gap between accuracy and efficiency which is particularly problematic when modeling noise, because most realistic noise models are not efficiently simulable on a classical computer. We have introduced extensions to the Pauli channel, the traditional error channel employed to model noise in simulations of quantum circuits. These expanded error channels are still computationally tractable to simulate, but result in more accurate approximations to realistic error channels at the single qubit level. Using the Steane [[7,1,3]] code, we have also investigated the behavior of these expanded channels at the logical error-corrected level. We have found that it depends strongly on whether the error is incoherent or coherent. In general, the Pauli channel will be an excellent approximation to incoherent channels, but an unsatisfactory one for coherent channels, especially because it severely underestimates the magnitude of the error. Finally, we also studied the honesty and accuracy of the expanded channels at the logical level. Our results suggest that these measures can be employed to generate lower and upper bounds to a quantum code's threshold under the influence of a specific error channel.
|
3 |
Codes correcteurs quantiques pouvant se décoder itérativement / Iteratively-decodable quantum error-correcting codesMaurice, Denise 26 June 2014 (has links)
On sait depuis vingt ans maintenant qu'un ordinateur quantique permettrait de résoudre en temps polynomial plusieurs problèmes considérés comme difficiles dans le modèle classique de calcul, comme la factorisation ou le logarithme discret. Entre autres, un tel ordinateur mettrait à mal tous les systèmes de chiffrement à clé publique actuellement utilisés en pratique, mais sa réalisation se heurte, entre autres, aux phénomènes de décohérence qui viennent entacher l'état des qubits qui le constituent. Pour protéger ces qubits, on utilise des codes correcteurs quantiques, qui doivent non seulement être performants mais aussi munis d'un décodage très rapide, sous peine de voir s'accumuler les erreurs plus vite qu'on ne peut les corriger. Une solution très prometteuse est fournie par des équivalents quantiques des codes LDPC (Low Density Parity Check, à matrice de parité creuse). Ces codes classiques offrent beaucoup d'avantages : ils sont faciles à générer, rapides à décoder (grâce à un algorithme de décodage itératif) et performants. Mais leur version quantique se heurte (entre autres) à deux problèmes. On peut voir un code quantique comme une paire de codes classiques, dont les matrices de parité sont orthogonales entre elles. Le premier problème consiste alors à construire deux « bons » codes qui vérifient cette propriété. L'autre vient du décodage : chaque ligne de la matrice de parité d'un des codes fournit un mot de code de poids faible pour le second code. En réalité, dans un code quantique, les erreurs correspondantes sont bénignes et n'affectent pas le système, mais il est difficile d'en tenir compte avec l'algorithme de décodage itératif usuel. On étudie dans un premier temps une construction existante, basée sur un produit de deux codes classiques. Cette construction, qui possède de bonnes propriétés théoriques (dimension et distance minimale), s'est avérée décevante dans les performances pratiques, qui s'expliquent par la structure particulière du code produit. Nous proposons ensuite plusieurs variantes de cette construction, possédant potentiellement de bonnes propriétés de correction. Ensuite, on étudie des codes dits q-Aires~: ce type de construction, inspiré des codes classiques, consiste à agrandir un code LDPC existant en augmentant la taille de son alphabet. Cette construction, qui s'applique à n'importe quel code quantique 2-Régulier (c'est-À-Dire dont les matrices de parité possèdent exactement deux 1 par colonne), a donné de très bonnes performances dans le cas particulier du code torique. Ce code bien connu se décode usuellement très bien avec un algorithme spécifique, mais mal avec l'algorithme usuel de propagation de croyances. Enfin, un équivalent quantique des codes spatialement couplés est proposé. Cette idée vient également du monde classique, où elle améliore de façon spectaculaire les performances des codes LDPC : le décodage s'effectue en temps quasi-Linéaire et atteint, de manière prouvée, la capacité des canaux symétriques à entrées binaires. Si dans le cas quantique, la preuve éventuelle reste encore à faire, certaines constructions spatialement couplées ont abouti à d'excellentes performances, bien au-Delà de toutes les autres constructions de codes LDPC quantiques proposées jusqu'à présent. / Quantum information is a developping field of study with various applications (in cryptography, fast computing, ...). Its basic element, the qubit, is volatile : any measurement changes its value. This also applies to unvolontary measurements due to an imperfect insulation (as seen in any practical setting). Unless we can detect and correct these modifications, any quantum computation is bound to fail. These unwanted modifications remind us of errors that can happen in the transmission of a (classical) message. These errors can be accounted for with an error-Correcting code. For quantum errors, we need to set quantum error-Correcting codes. In order to prevent the clotting of errors that cannot be compensated, these quantum error-Correcting codes need to be both efficient and fast. Among classical error-Correcting codes, Low Density Parity Check (LDPC) codes provide many perks: They are easy to create, fast to decode (with an iterative decoding algorithme, known as belief propagation) and close to optimal. Their quantum equivalents should then be good candidates, even if they present two major drawbacks (among other less important ones). A quantum error correction code can be seen as a combination of two classical codes, with orthogonal parity-Check matrices. The first issue is the building of two efficient codes with this property. The other is in the decoding: each row of the parity-Check matrix from one code gives a low-Weight codeword of the other code. In fact, with quantum codes, corresponding errors do no affect the system, but are difficult to account for with the usual iterative decoding algorithm. In the first place, this thesis studies an existing construction, based on the product of two classical codes. This construction has good theoritical properties (dimension and minimal distance), but has shown disappointing practical results, which are explained by the resulting code's structure. Several variations, which could have good theoritical properties are also analyzed but produce no usable results at this time. We then move to the study of q-Ary codes. This construction, derived from classical codes, is the enlargement of an existing LDPC code through the augmentation of its alphabet. It applies to any 2-Regular quantum code (meaning with parity-Check matrices that have exactly two ones per column) and gives good performance with the well-Known toric code, which can be easily decoded with its own specific algorithm (but not that easily with the usual belief-Propagation algorithm). Finally this thesis explores a quantum equivalent of spatially coupled codes, an idea also derived from the classical field, where it greatly enhances the performance of LDPC codes. A result which has been proven. If, in its quantum form, a proof is still not derived, some spatially-Coupled constructions have lead to excellent performance, well beyond other recent constuctions.
|
4 |
Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical ComputerNyman, Peter January 2008 (has links)
<p>Utvecklandet av kvantdatorn är ett ytterst lovande projekt som kombinerar teoretisk och experimental kvantfysik, matematik, teori om kvantinformation och datalogi. Under första steget i utvecklandet av kvantdatorn låg huvudintresset på att skapa några algoritmer med framtida tillämpningar, klargöra grundläggande frågor och utveckla en experimentell teknologi för en leksakskvantdator som verkar på några kvantbitar. Då dominerade förväntningarna om snabba framsteg bland kvantforskare. Men det verkar som om dessa stora förväntningar inte har besannats helt. Många grundläggande och tekniska problem som dekoherens hos kvantbitarna och instabilitet i kvantstrukturen skapar redan vid ett litet antal register tvivel om en snabb utveckling av kvantdatorer som verkligen fungerar. Trots detta kan man inte förneka att stora framsteg gjorts inom kvantteknologin. Det råder givetvis ett stort gap mellan skapandet av en leksakskvantdator med 10-15 kvantregister och att t.ex. tillgodose de tekniska förutsättningarna för det projekt på 100 kvantregister som aviserades för några år sen i USA. Det är också uppenbart att svårigheterna ökar ickelinjärt med ökningen av antalet register. Därför är simulering av kvantdatorer i klassiska datorer en viktig del av kvantdatorprojektet. Självklart kan man inte förvänta sig att en kvantalgoritm skall lösa ett NP-problem i polynomisk tid i en klassisk dator. Detta är heller inte syftet med klassisk simulering. Den klassiska simuleringen av kvantdatorer kommer att täcka en del av gapet mellan den teoretiskt matematiska formuleringen av kvantmekaniken och ett förverkligande av en kvantdator. Ett av de viktigaste problemen i vetenskapen om kvantdatorn är att utveckla ett nytt symboliskt språk för kvantdatorerna och att anpassa redan existerande symboliska språk för klassiska datorer till kvantalgoritmer. Denna avhandling ägnas åt en anpassning av det symboliska språket Mathematica till kända kvantalgoritmer och motsvarande simulering i klassiska datorer. Konkret kommer vi att representera Simons algoritm, Deutsch-Joszas algoritm, Grovers algoritm, Shors algoritm och kvantfelrättande koder i det symboliska språket Mathematica. Vi använder samma stomme i alla dessa algoritmer. Denna stomme representerar de karaktäristiska egenskaperna i det symboliska språkets framställning av kvantdatorn och det är enkelt att inkludera denna stomme i framtida algoritmer.</p> / <p>Quantum computing is an extremely promising project combining theoretical and experimental quantum physics, mathematics, quantum information theory and computer science. At the first stage of development of quantum computing the main attention was paid to creating a few algorithms which might have applications in the future, clarifying fundamental questions and developing experimental technologies for toy quantum computers operating with a few quantum bits. At that time expectations of quick progress in the quantum computing project dominated in the quantum community. However, it seems that such high expectations were not totally justified. Numerous fundamental and technological problems such as the decoherence of quantum bits and the instability of quantum structures even with a small number of registers led to doubts about a quick development of really working quantum computers. Although it can not be denied that great progress had been made in quantum technologies, it is clear that there is still a huge gap between the creation of toy quantum computers with 10-15 quantum registers and, e.g., satisfying the technical conditions of the project of 100 quantum registers announced a few years ago in the USA. It is also evident that difficulties increase nonlinearly with an increasing number of registers. Therefore the simulation of quantum computations on classical computers became an important part of the quantum computing project. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. Classical simulation of quantum computations will cover part of the gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. One of the most important problems in "quantum computer science" is the development of new symbolic languages for quantum computing and the adaptation of existing symbolic languages for classical computing to quantum algorithms. The present thesis is devoted to the adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulation on the classical computer. Concretely we shall represent in the Mathematica symbolic language Simon's algorithm, the Deutsch-Josza algorithm, Grover's algorithm, Shor's algorithm and quantum error-correcting codes. We shall see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include this framework in future algorithms.</p>
|
5 |
On relations between classical and quantum theories of information and probabilityNyman, Peter January 2011 (has links)
In this thesis we study quantum-like representation and simulation of quantum algorithms by using classical computers.The quantum--like representation algorithm (QLRA) was introduced by A. Khrennikov (1997) to solve the ``inverse Born's rule problem'', i.e. to construct a representation of probabilistic data-- measured in any context of science-- and represent this data by a complex or more general probability amplitude which matches a generalization of Born's rule.The outcome from QLRA matches the formula of total probability with an additional trigonometric, hyperbolic or hyper-trigonometric interference term and this is in fact a generalization of the familiar formula of interference of probabilities. We study representation of statistical data (of any origin) by a probability amplitude in a complex algebra and a Clifford algebra (algebra of hyperbolic numbers). The statistical data is collected from measurements of two dichotomous and trichotomous observables respectively. We see that only special statistical data (satisfying a number of nonlinear constraints) have a quantum--like representation. We also study simulations of quantum computers on classical computers.Although it can not be denied that great progress have been made in quantum technologies, it is clear that there is still a huge gap between the creation of experimental quantum computers and realization of a quantum computer that can be used in applications. Therefore the simulation of quantum computations on classical computers became an important part in the attempt to cover this gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. The second part of this thesis is devoted to adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulations on classical computers. Concretely we represent Simon's algorithm, Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm and quantum error-correcting codes in the Mathematica symbolic language. We see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include future algorithms in this framework.
|
6 |
Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical ComputerNyman, Peter January 2008 (has links)
Utvecklandet av kvantdatorn är ett ytterst lovande projekt som kombinerar teoretisk och experimental kvantfysik, matematik, teori om kvantinformation och datalogi. Under första steget i utvecklandet av kvantdatorn låg huvudintresset på att skapa några algoritmer med framtida tillämpningar, klargöra grundläggande frågor och utveckla en experimentell teknologi för en leksakskvantdator som verkar på några kvantbitar. Då dominerade förväntningarna om snabba framsteg bland kvantforskare. Men det verkar som om dessa stora förväntningar inte har besannats helt. Många grundläggande och tekniska problem som dekoherens hos kvantbitarna och instabilitet i kvantstrukturen skapar redan vid ett litet antal register tvivel om en snabb utveckling av kvantdatorer som verkligen fungerar. Trots detta kan man inte förneka att stora framsteg gjorts inom kvantteknologin. Det råder givetvis ett stort gap mellan skapandet av en leksakskvantdator med 10-15 kvantregister och att t.ex. tillgodose de tekniska förutsättningarna för det projekt på 100 kvantregister som aviserades för några år sen i USA. Det är också uppenbart att svårigheterna ökar ickelinjärt med ökningen av antalet register. Därför är simulering av kvantdatorer i klassiska datorer en viktig del av kvantdatorprojektet. Självklart kan man inte förvänta sig att en kvantalgoritm skall lösa ett NP-problem i polynomisk tid i en klassisk dator. Detta är heller inte syftet med klassisk simulering. Den klassiska simuleringen av kvantdatorer kommer att täcka en del av gapet mellan den teoretiskt matematiska formuleringen av kvantmekaniken och ett förverkligande av en kvantdator. Ett av de viktigaste problemen i vetenskapen om kvantdatorn är att utveckla ett nytt symboliskt språk för kvantdatorerna och att anpassa redan existerande symboliska språk för klassiska datorer till kvantalgoritmer. Denna avhandling ägnas åt en anpassning av det symboliska språket Mathematica till kända kvantalgoritmer och motsvarande simulering i klassiska datorer. Konkret kommer vi att representera Simons algoritm, Deutsch-Joszas algoritm, Grovers algoritm, Shors algoritm och kvantfelrättande koder i det symboliska språket Mathematica. Vi använder samma stomme i alla dessa algoritmer. Denna stomme representerar de karaktäristiska egenskaperna i det symboliska språkets framställning av kvantdatorn och det är enkelt att inkludera denna stomme i framtida algoritmer. / Quantum computing is an extremely promising project combining theoretical and experimental quantum physics, mathematics, quantum information theory and computer science. At the first stage of development of quantum computing the main attention was paid to creating a few algorithms which might have applications in the future, clarifying fundamental questions and developing experimental technologies for toy quantum computers operating with a few quantum bits. At that time expectations of quick progress in the quantum computing project dominated in the quantum community. However, it seems that such high expectations were not totally justified. Numerous fundamental and technological problems such as the decoherence of quantum bits and the instability of quantum structures even with a small number of registers led to doubts about a quick development of really working quantum computers. Although it can not be denied that great progress had been made in quantum technologies, it is clear that there is still a huge gap between the creation of toy quantum computers with 10-15 quantum registers and, e.g., satisfying the technical conditions of the project of 100 quantum registers announced a few years ago in the USA. It is also evident that difficulties increase nonlinearly with an increasing number of registers. Therefore the simulation of quantum computations on classical computers became an important part of the quantum computing project. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. Classical simulation of quantum computations will cover part of the gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. One of the most important problems in "quantum computer science" is the development of new symbolic languages for quantum computing and the adaptation of existing symbolic languages for classical computing to quantum algorithms. The present thesis is devoted to the adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulation on the classical computer. Concretely we shall represent in the Mathematica symbolic language Simon's algorithm, the Deutsch-Josza algorithm, Grover's algorithm, Shor's algorithm and quantum error-correcting codes. We shall see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include this framework in future algorithms.
|
7 |
On The Fourier Transform Approach To Quantum Error ControlKumar, Hari Dilip 07 1900 (has links) (PDF)
Quantum mechanics is the physics of the very small. Quantum computers are devices that utilize the power of quantum mechanics for their computational primitives. Associated to each quantum system is an abstract space known as the Hilbert space. A subspace of the Hilbert space is known as a quantum code. Quantum codes allow to protect the computational state of a quantum computer against decoherence errors.
The well-known classes of quantum codes are stabilizer or additive codes, non-additive codes and Clifford codes. This thesis aims at demonstrating a general approach to the construction of the various classes of quantum codes. The framework utilized is the Fourier transform over finite groups.
The thesis is divided into four chapters. The first chapter is an introduction to basic quantum mechanics, quantum computation and quantum noise. It lays the foundation for an understanding of quantum error correction theory in the next chapter.
The second chapter introduces the basic theory behind quantum error correction. Also, the various classes and constructions of active quantum error-control codes are introduced.
The third chapter introduces the Fourier transform over finite groups, and shows how it may be used to construct all the known classes of quantum codes, as well as a class of quantum codes as yet unpublished in the literature. The transform domain approach was originally introduced in (Arvind et al., 2002). In that paper, not all the classes of quantum codes were introduced. We elaborate on this work to introduce the other classes of quantum codes, along with a new class of codes, codes from idempotents in the transform domain.
The fourth chapter details the computer programs that were used to generate and test for the various code classes. Code was written in the GAP (Groups, Algorithms, Programming) computer algebra package.
The fifth and final chapter concludes, with possible directions for future work.
References cited in the thesis are attached at the end of the thesis.
|
Page generated in 0.055 seconds