1 |
Temperature reduction during concrete hydration in massive structuresLagundzija, Sandra, Thiam, Marie January 2017 (has links)
Concrete is one of the most used building materials in the world because of its good properties. However, cement which is one of the main components in concrete, produces a high amount of heat during the hydration process. The generated heat leads to temperature rise inside the structure. This temperature rise becomes an issue for massive concrete structures, such as hydropower plants and dams, since natural cooling is no longer sufficient. In combination with restrained boundary conditions, increasing temperatures result in tensile stresses causing thermal cracking of the structure. Reducing thermal cracking in a restrained massive concrete structure can be done by lowering or controlling the temperature rise. Several methods of cooling can be used to achieve this. These methods may be divided in pre-cooling and post-cooling methods. To pre-cool concrete the cement content can be reduced by replacing it with mineral additions such as limestone, fly ash, silica fume and ground granulated blast furnace slag. Another method is to increase the size of the aggregates or to pre-cool the aggregates. Ice can also be used to reduce the temperature at casting the concrete and reduce the amount of water that is needed in the mix. The main post-cooling method is cooling pipes, with cold water circulating in the pipes to cool the structure. This master thesis project focuses on comparing the possible methods to reduce the temperature in massive concrete structures. Simulations with the computer program HACON were performed to analyse the effect of these methods. The results from this study showed that cooling pipes gave the best reduction of the maximum temperature and the maximum temperature gradient by 42 % and 76 %, respectively. However, if cooling pipes were to be avoided, the best result of the studied mineral additions was with a replacement of 30 % fly ash resulting in almost the same reduction in maximum temperature but less than one third of the reduction in the gradient. The reduction obtained with fly ash was not as efficient as cooling pipes; therefore appropriate combinations of different pre-cooling methods were also studied. The results of the combination of fly ash, ice, and larger aggregates showed even better reduction of the maximum temperature reduction compared to cooling pipes. The results also showed that the obtained temperature reductions were almost independent from the thickness of the structure. This conclusion is however only valid for massive structures, where cases with 1.5 and 3.0 m were analysed. Further study may be on finding suitable combination of pre-cooling methods to avoid the use of cooling pipes, as well as analysing the cost for the different pre-cooling methods. / Betong är ett av de mest använda byggmaterialen i världen, tack vare dess goda egenskaper. Cement, som är en av huvudkomponenterna i betong, genererar en stor värmeutveckling under hydratationen. Värmeutveckling som genereras leder till temperaturhöjningar i strukturen. Denna temperaturhöjning blir således ett problem för massiva betong- konstruktioner, såsom vattenkraftverk och dammar, på grund av att den naturliga avkylningen inte längre är tillräcklig för att avlägsna värmen. I kombination med yttre och inre tvång resulterar högre temperaturer i dragspänningar som orsakar sprickor i strukturen. Minskningen av sprickbildning i en fastgjuten massiv betongstruktur kan ske genom att minska eller reglera temperaturhöjningen. För att göra det kan flera kylmetoder användas. Dessa metoder kan delas in i förberedande kylning och efterkylning. Med förberedande kylning kan cementhalten i betong reduceras genom ersättning med mineraltillsatser såsom kalksten, flygaska, silikastoft eller markgranulerad masugnsslagg. En annan metod är att öka ballastens storlek eller att kyla ballasten. Is kan användas både för att minska temperaturen vid gjutning av betong och reducera mängden vatten som behövs i blandningen. Den vanligaste efterkylningsmetoden är användning av kylrör med cirkulerande kallt vatten för att kyla strukturen, dvs. utan att ändra mängden värme som produceras av cementhydratationen. Denna uppsats ämnar jämföra olika metoder för att reducera temperaturen i massiva betongkonstruktioner. Simuleringar har genomförts med datorprogrammet HACON i syfte att analysera inverkan av olika metoder. Resultaten från studien visade att kylrör gav den bästa minskningen av den maximala temperaturen och den maximala reduktionen av temperaturgradienten med 42 % respektive 76 %. Om kylrör ska undvikas erhålls det bästa resultatet vid användning av 30 % flygaska, vilket resulterade i en snarlik minskning i maximal temperatur med mindre än en tredjedel av reduktionen av gradienten. Då reduceringen med flygaska inte var lika effektiv som med kylrör har lämpliga kombinationer av olika förberedande kylmetoder studerats. Resultatet av kombinationen med flygaska, is och större ballast visade en ännu effektivare minskning av den maximala temperaturreduceringen jämfört med kylrör. Vidare visade resultaten även att de erhållna temperaturreduceringarna nästan var oberoende av konstruktionens tjocklek. Denna slutsats kan endast tillämpas för massiva konstruktioner, där fall med en 1.5 och 3.0 m tjock vägg analyserades. Fortsatta studier kan vara att hitta fler lämpliga kombinationer av förberedande kylmetoder för att undvika användning av kylrör, liksom att analysera kostnaden för de olika förberedande kylmetoderna.
|
Page generated in 0.0959 seconds