• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 14
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 56
  • 21
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

High-resolution structural studies of kynurenine 3-monooxygenase

Taylor, Mark Robert Duncan January 2018 (has links)
The kynurenine pathway produces NAD+ from L-tryptophan. Metabolites known as the kynurenines are produced within the pathway. The effects of the kynurenines have been associated with a number of diseases including cancer, Alzheimer’s disease, Huntington’s disease, and acute pancreatitis. Kynurenine monooxygenase (KMO) is an enzyme that catalyses the conversion of L-kynurenine to 3-hydroxy-L-kynurenine, the downstream product of which is the neurotoxic quinolinic acid. L-kynurenine is positioned at a branching point within the pathway. Metabolism via KMO leads to quinolinic acid production whereas conversion via kynurenine aminotransferase (KAT) produces the neuroprotective kynurenic acid. Inhibition of KMO leads to an increase in kynurenic acid concentration. This has also been shown to ameliorate the symptoms of neurological diseases in a number of animal models as well as to protect against multiple organ dysfunction caused by acute pancreatitis in rodent models. These findings present KMO as a promising drug target. Due to the hydrophobic nature of human KMO (hKMO) it has been necessary to utilise other forms of KMO as models. Past studies have produced crystal structures of a truncated Saccharomyces cerevisiae KMO and of Pseudomonas fluorescens KMO (PfKMO). Previous work in this research group has resulted in the structure of variants of PfKMO bound to either inhibitor molecules or substrate. These structures identified residues involved in substrate binding and the presence of a highly mobile section of the C-terminus, giving rise to open and closed conformations. It was surmised the movement of the C-terminus was dependent upon the presence of substrate and an interactive network between the C-terminus and the rest of the protein. Using improved crystallising conditions high-resolution structures of PfKMO have been produced that allow for further study of residues involved in substrate binding and the interactive network within the C-terminus. The mutants R84K and Y404F showed severely decreased enzyme activity. Crystal structures of these proteins showed disrupted interactions between substrate and active site. These findings underline the importance of residues R84 and Y404 in substrate binding. An H320F mutation gives an analogous active site to hKMO. Crystallographic and kinetic study of this mutant proved very similar to PfKMO, supporting the use of PfKMO as a model for hKMO. Throughout the work each structure had a P21221 space group with two molecules in the asymmetric unit. The presence of an open and closed molecule within each structure, including substrate-free molecules refuted the connection between C-terminus and substrate. R386K and E372T mutations were separately introduced in order to interrupt the interactive network. The presence of both open and closed conformations in the structures of R386K and E372T refutes the necessity for the interactive network in C-terminus movement. The data analysed throughout the project suggest simple mobility and thermal motion as the cause of the movement of the C-terminus. This work, in conjunction with kinetic data from the thesis of Helen Bell, presents structural data to characterise the role of binding residues within the active site of KMO as well as the mechanistic role of the C-terminus. It also highlights the importance of certain binding residues and countered the previously held hypotheses surrounding the significance of the C-terminus. The mechanistic role of the C-terminus therefore remains unclear and requires further study.
12

Absence of kynurenine 3-monooxygenase reduces mortality of acute viral myocarditis in mice / キヌレニン3‐モノオキシゲナーゼの欠損は急性ウイルス性心筋炎マウスの死亡率を軽減する

Kubo, Hisako 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第20296号 / 人健博第44号 / 新制||人健||4(附属図書館) / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 高桑 徹也, 教授 三谷 章, 教授 浅野 雅秀 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
13

Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans

Yan, Edwin B., Frugier, Tony, Lim, Chai K., Heng, Benjamin, Sundaram, Gayathri, Tan, May, Rosenfeld, Jeffrey V., Walker, David W., Guillemin, Gilles J., Morganti-Kossmann, Maria C. January 2015 (has links)
ABSTRACT: During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery. METHODS: Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9-10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry. RESULTS: In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores. CONCLUSION: TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN's detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.
14

Etude de la voie des kynurénines dans l'obésité humaine / Study of the kynurenine pathway in human obesity

Favennec, Marie 05 October 2015 (has links)
Le tryptophane, un acide aminé essentiel, est soit utilisé pour la synthèse protéique et la synthèse de sérotonine, soit dégradé en plusieurs métabolites appelés collectivement les kynurénines. L’expression et l’activité des enzymes de la voie des kynurénines sont stimulées par l’inflammation. La synthèse des kynurénines est donc susceptible d’être augmentée chez les individus obèses. En effet, l’obésité est caractérisée par une inflammation chronique à bas bruit du tissu adipeux, reflétée par l’augmentation de facteurs inflammatoires circulants qui contribuent à l’apparition de l’insulinorésistance et du diabète de type 2. Plusieurs métabolites de la voie des kynurénines pourraient être des facteurs de risque pour le développement de l’insulinorésistance. La chirurgie bariatrique est actuellement le traitement le plus efficace pour l’obésité sévère, elle permet une perte de poids significative ainsi qu’une diminution des facteurs inflammatoires circulantes et une amélioration de l’insulinorésistance et du diabète. Il a été démontré que l’expression d’IDO1, la première enzyme de la voie des kynurénines, est plus élevée dans le tissu adipeux des individus obèses. Le ratio kynurénine sur tryptophane, qui reflète l’activité D’IDO1, est également augmenté chez les individus obèses.Notre objectif a été de caractériser l’expression des enzymes de la voie des kynurénines dans le tissu adipeux et d’évaluer les concentrations des kynurénines dans les sérums de patientes obèses pour rechercher si certains de ces facteurs pouvaient être reliés à l’apparition du diabète. Ces études ont été réalisées dans une cohorte de femmes obèses normoglycémiques et diabétiques. Puis dans un second temps nous avons étudié les conséquences de la perte de poids induite par la chirurgie bariatrique sur les concentrations circulantes des kynurénines et évalué si les variations des concentrations des kynurénines pourraient expliquer en partie l’amélioration du diabète observée après la chirurgie.Dans cette étude, nous avons montré que plusieurs enzymes de la voie sont plus exprimées dans le tissu adipeux des individus obèses que des minces. L’augmentation de l’expression des enzymes dans le tissu adipeux des individus obèses provient d’une part de la présence de macrophages pro-inflammatoires dans le tissu adipeux et également de la réponse des adipocytes aux stimuli pro-inflammatoires. En parallèle, nous avons montré que les concentrations circulantes des kynurénines et le ratio kynurénine sur tryptophane augmentent avec l’IMC et qu’ils diminuent un an après la chirurgie bariatrique. Dans notre étude, comme attendu, la chirurgie bariatrique est associée à une amélioration voire à une rémission du diabète. Nous avons montré également que le maintien des concentrations d’acide kynurénique et d’acide quinolinique sont associés respectivement à la rémission du diabète et à l’amélioration des traits cliniques qui définissent le diabète. La diminution des concentrations en acide xanthurénique après la chirurgie est associée au contraire à une amélioration des traits cliniques qui définissent le diabète. / Tryptophan, an essential amino acid, is either used in protein synthesis or metabolized via the serotonin or the kynurenine pathway. The kynurenine pathway is the main route of tryptophan degradation and generates several metabolites collectively called “kynurenines”. The expression of kynurenine pathway enzymes is induced by inflammatory mediators. Consequently kynurenine synthesis could be induced in individuals with obesity. In fact, obesity is characterized by a chronic low grade inflammation of the adipose tissue reflected by increased serum levels of inflammatory factors which are known to contribute to the development of obesity-induced insulino-resistance. Some metabolites of the kynurenine pathway have been proposed to be risk factors for the development of insulin resistance. Bariatric surgery is currently the most effective treatment for severe obesity and results in a significant weight loss, a decreased level of inflammatory factors and an amelioration of glucose homeostasis. The first enzyme of the kynurenine pathway, IDO1, is known to be more expressed in the adipose tissue of individuals with obesity compared to lean individuals. The kynurenine over tryptophan ratio reflects the activity of IDO1 and is also increased in individuals with obesity.Our objective was to characterize the expression of the kynurenine pathway enzymes in the adipose tissue of women with severe obesity and to evaluate serum levels of the kynurenine pathway metabolites to determine whether these factors could be associated with the appearance of diabetes. This study was performed in women with severe obesity with or without type 2 diabetes. Then we investigated the consequences of weight loss induced by bariatric surgery on levels of circulating kynurenines in order to evaluate whether these variations could explain the improvement in glucose control and type 2 diabetes remission after one year follow-up.In this study, we have shown that several kynurenine pathway enzymes were more expressed in the adipose tissue of women with obesity compared to lean controls. This increase is due to the presence of pro-inflammatory macrophages in the adipose tissue and also comes from the adipocyte response to inflammatory stimuli. In addition, we observed that the serum level of kynurenine and kynurenine over tryptophan ratio are higher in women with higher BMI and they both decrease one year after bariatric surgery. In addition, we observed that the serum level of kynurenine and kynurenine over tryptophan ratio are higher in women with higher BMI and they both decrease one year after bariatric surgery. As expected, bariatric surgery is associated with the improvement and even the remission of type 2 diabetes. We have shown that higher levels of kynurenic acid and quinolinic acid one year after the surgery are associated respectively with type 2 diabetes remission and better glucose homeostasis and that lower levels of xanthurenic acid are associated with better glucose homeostasis.
15

Novel screening techniques for the discovery of human KMO inhibitors

Wilson, Kris January 2014 (has links)
Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan degradation. KMO is emerging as an increasingly important target for drug development. The enzyme is implicated in the development and progression of several neurodegenerative disorders, in the regulation of the immune response and in sterile systemic inflammation. Production of recombinant human enzyme is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Although several in vitro KMO assay techniques have been reported in the literature these methods are typically insensitive or require purified protein for use in high-throughput screening assays of human KMO enzyme. The first report of bacterial expression of soluble active human KMO enzyme is described here. Fusion protein tags were used to optimise soluble expression and enable characterisation and partial purification of the active protein constructs. Functional enzyme was used to develop several novel high-throughput drug screening techniques for the discovery of inhibitors specifically targeting human KMO. These screening techniques were fully characterised and validated using known KMO inhibitors from the patent literature. One of the novel KMO assay techniques was implemented for compound screening and several hit compounds were identified, validated and their in vitro DMPK characteristics determined. In addition to assay development, KMO was characterised at the cellular level when overexpressed in HEK293 cells. These experiments indicated that KMO overexpressing cells undergo bidirectional adaptation via alteration of kynurenine pathway homeostasis. As a result, these cells are protected from cytotoxicity mediated by 3-hydroxykynurenine (3-HK), the toxic product of KMO catalysis. The development of novel high throughput screening techniques targeting KMO has enabled screening of potential new inhibitors specifically targeting the human enzyme. Implementation of these screening assays will allow accelerated and improved discovery and development of novel KMO inhibitors for the potential treatment of numerous disease states.
16

Kynurenine pathway metabolism at the blood-brain barrier

Owe-Young, Robert, School of Medicine, UNSW January 2006 (has links)
A major product of HIV-infected and cytokine-stimulated monocytic-lineage cells is quinolinic acid (QUIN), a neurotoxic metabolite of the kynurenine pathway (KP) of L-tryptophan (L-Trp) metabolism. Despite the large number of neurotoxins found in HIV patients with AIDS Dementia Complex (ADC), only QUIN correlates with both the presence and severity of ADC. With treatment, cerebrospinal fluid (CSF) QUIN concentrations decrease proportionate to the degree of clinical and neuropsychological improvement. As endothelial cells (EC) of the blood-brain barrier (BBB) are the first brain-associated cell that a bloodborne pathogen would encounter, this project examined the BBB response to KP metabolites, as these are implicated in damage of the CNS associated with ADC. Using RT-PCR and HPLC/gas chromatographymass spectrometry (GC-MS), I found that cultured primary human BBB EC and pericytes constitutively expressed the KP. EC synthesised kynurenic acid (KA) constitutively, and after immune activation, kynurenine (KYN). Pericytes produced small amounts of picolinic acid and after immune activation, KYN. An SV40-transformed BBB EC showed no KP expression. By contrast, human umbilical vein EC only expressed low levels of KA after immune activation, however human dermal microvascular EC showed a similar constitutive and inducible KP to that in BBB EC. As T cells are central to primary HIV infection, I also examined KP expression in two CD4+ and one CD4- cell lines, but none showed either constitutive or inducible KP expression. I next examined how QUIN might interact with BBB EC. There was no binding of 3H-QUIN to cultured primary human BBB EC, however a biologically relevant concentration of QUIN induced changes in gene expression which adversely affected EC function, possibly mediated by lipid peroxidation and oxidative stress. The upregulated genes were of the heat shock protein family, and the downregulated genes were associated with regulation of cell adhesion, tight junction and cytoskeletal stability, metalloproteinase (MMP) regulation, apoptosis and G protein signaling. Immunofluorescence showed that QUIN induced morphological changes in BBB EC consistent with the changes in gene expression. Gelatin zymography showed that this was not mediated by MMPs, as constitutive MMP expression was unchanged. These data provide strong evidence for QUIN directly damaging the BBB in the context of HIV infection.
17

Kynurenine pathway metabolism at the blood-brain barrier

Owe-Young, Robert, School of Medicine, UNSW January 2006 (has links)
A major product of HIV-infected and cytokine-stimulated monocytic-lineage cells is quinolinic acid (QUIN), a neurotoxic metabolite of the kynurenine pathway (KP) of L-tryptophan (L-Trp) metabolism. Despite the large number of neurotoxins found in HIV patients with AIDS Dementia Complex (ADC), only QUIN correlates with both the presence and severity of ADC. With treatment, cerebrospinal fluid (CSF) QUIN concentrations decrease proportionate to the degree of clinical and neuropsychological improvement. As endothelial cells (EC) of the blood-brain barrier (BBB) are the first brain-associated cell that a bloodborne pathogen would encounter, this project examined the BBB response to KP metabolites, as these are implicated in damage of the CNS associated with ADC. Using RT-PCR and HPLC/gas chromatographymass spectrometry (GC-MS), I found that cultured primary human BBB EC and pericytes constitutively expressed the KP. EC synthesised kynurenic acid (KA) constitutively, and after immune activation, kynurenine (KYN). Pericytes produced small amounts of picolinic acid and after immune activation, KYN. An SV40-transformed BBB EC showed no KP expression. By contrast, human umbilical vein EC only expressed low levels of KA after immune activation, however human dermal microvascular EC showed a similar constitutive and inducible KP to that in BBB EC. As T cells are central to primary HIV infection, I also examined KP expression in two CD4+ and one CD4- cell lines, but none showed either constitutive or inducible KP expression. I next examined how QUIN might interact with BBB EC. There was no binding of 3H-QUIN to cultured primary human BBB EC, however a biologically relevant concentration of QUIN induced changes in gene expression which adversely affected EC function, possibly mediated by lipid peroxidation and oxidative stress. The upregulated genes were of the heat shock protein family, and the downregulated genes were associated with regulation of cell adhesion, tight junction and cytoskeletal stability, metalloproteinase (MMP) regulation, apoptosis and G protein signaling. Immunofluorescence showed that QUIN induced morphological changes in BBB EC consistent with the changes in gene expression. Gelatin zymography showed that this was not mediated by MMPs, as constitutive MMP expression was unchanged. These data provide strong evidence for QUIN directly damaging the BBB in the context of HIV infection.
18

Kynurenine pathway metabolism at the blood-brain barrier

Owe-Young, Robert, School of Medicine, UNSW January 2006 (has links)
A major product of HIV-infected and cytokine-stimulated monocytic-lineage cells is quinolinic acid (QUIN), a neurotoxic metabolite of the kynurenine pathway (KP) of L-tryptophan (L-Trp) metabolism. Despite the large number of neurotoxins found in HIV patients with AIDS Dementia Complex (ADC), only QUIN correlates with both the presence and severity of ADC. With treatment, cerebrospinal fluid (CSF) QUIN concentrations decrease proportionate to the degree of clinical and neuropsychological improvement. As endothelial cells (EC) of the blood-brain barrier (BBB) are the first brain-associated cell that a bloodborne pathogen would encounter, this project examined the BBB response to KP metabolites, as these are implicated in damage of the CNS associated with ADC. Using RT-PCR and HPLC/gas chromatographymass spectrometry (GC-MS), I found that cultured primary human BBB EC and pericytes constitutively expressed the KP. EC synthesised kynurenic acid (KA) constitutively, and after immune activation, kynurenine (KYN). Pericytes produced small amounts of picolinic acid and after immune activation, KYN. An SV40-transformed BBB EC showed no KP expression. By contrast, human umbilical vein EC only expressed low levels of KA after immune activation, however human dermal microvascular EC showed a similar constitutive and inducible KP to that in BBB EC. As T cells are central to primary HIV infection, I also examined KP expression in two CD4+ and one CD4- cell lines, but none showed either constitutive or inducible KP expression. I next examined how QUIN might interact with BBB EC. There was no binding of 3H-QUIN to cultured primary human BBB EC, however a biologically relevant concentration of QUIN induced changes in gene expression which adversely affected EC function, possibly mediated by lipid peroxidation and oxidative stress. The upregulated genes were of the heat shock protein family, and the downregulated genes were associated with regulation of cell adhesion, tight junction and cytoskeletal stability, metalloproteinase (MMP) regulation, apoptosis and G protein signaling. Immunofluorescence showed that QUIN induced morphological changes in BBB EC consistent with the changes in gene expression. Gelatin zymography showed that this was not mediated by MMPs, as constitutive MMP expression was unchanged. These data provide strong evidence for QUIN directly damaging the BBB in the context of HIV infection.
19

Astrocytes regulate cortical ACh release via kynurenic acid implications for cognitive impairments in schizophrenia /

Zmarowski, Amy L. January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 116-138).
20

The Inflammatory and Neuroanatomical Factors Involved in Post-stroke Depression

Bensimon, Kira 21 November 2013 (has links)
This cross-sectional study examined neurobiologic correlates of depression in ischemic stroke patients. Depression severity was measured with a standardized scale (Center for Epidemiologic Studies Depression Scale; CES-D). Eighty-two patients (53.1% male, mean (± SD) age 71.9 ± 14.2 years, mean (± SD) National Institutes of Health Stroke Scale (NIHSS) score 4.6±4.7, mean (± SD) CES-D score 12.6 ± 10.8) were recruited. A linear regression controlling for age and stroke severity (NIHSS) determined that the kynurenine to tryptophan ratio (β= -0.105, p=0.369) was not significantly associated with CES-D (primary hypothesis) (overall model R2=0.069, F3,73=1.805, p=0.154). Secondary analyses suggested one instance of cytokines favouring inflammatory states in mild depressive symptomatology; IFN-Ɣ/IL-10 (OR, 2.17; 95% CI, 1.02-4.64, p=0.045). For the most part however, inclusion of cytokines and neuroimaging correlates such as atrophy, lesion location and white matter changes were non-significant. Longitudinal studies are necessary to identify the possible neurobiologic correlates of depressive symptoms post-stroke.

Page generated in 0.0685 seconds