• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 9
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Time dependent material properties of shotcrete for hard rock tunnelling

Bryne, Lars Elof January 2014 (has links)
In this thesis different mechanical properties for shotcrete (sprayed concrete) such as compression strength, bond strength, bending tensile strength, elastic modulus, free and restrained shrinkage as a function of its age was investigated. One of the main issues was to investigate the difference between ordinary cast concrete and shotcrete. Reliable material data for young and hardening shotcrete is scarce which in the past have made such comparisons difficult. Also, less accurate data representative for cast concrete has often been used in numerical modelling and design analyses. The focus of the project has particularly been on the properties bond strength and restrained shrinkage for which two new testing methods has been developed and evaluated. Microstructural studies have also been performed as a complement to the bond strength testing. The bond to rock is one of the most important properties for shotcrete used as rock reinforcement. During the very first time after spraying the physical properties and the bond to the rock depend on the set accelerator and the micro structure that is formed. The investigation of early age bond strength of shotcrete is of great importance both from a production perspective and a safety perspective. The newly developed method was tested and evaluated and proved that it can be used for bond strength testing already from a couple of hours after shotcreting. The bond, or adhesion, depends on several factors such as texture of the rock, the type of accelerator, application technique, etc. In this work the development of the microstructure in the interfacial transition zone (ITZ) and strength of the bond was investigated. The results show that the bond strength is related to the hydration process, i.e. the strength gain of the shotcrete. The early development of the ITZ was here studied using a scanning electron microscope (SEM) making it possible to observe changes over time, before and after proper cement hydration. Restrained shrinkage cracking of shotcrete, especially in the case of shotcrete sprayed on soft drains that are parts of a tunnel lining not continuously bonded to the rock, can be detrimental for the sustainability of an infrastructure tunnel system. Maintenance and repair costs can be high over time. It is shown that the developed test method realistically captures the behaviour of shotcrete drains on hard rock in situ. The method can be used in the evaluation of different technical solutions for avoiding or minimizing shrinkage cracks in shotcreted soft drains. It can also be used to assess the performance of shotcrete fully bonded to a rock surface, with respect to the ability to prevent cracking or to distribute possible shrinkage damage into several fine cracks instead of one wide. / <p>QC 20140526</p>
32

Engineering Characteristics of Sensitive Marine Clays - Examples of Clays in Eastern Canada

Nader, Athir 28 February 2014 (has links)
Sensitive marine clay in Ottawa is a challenging soil for geotechnical engineers. This type of clay behaves differently than other soils in Canada or other parts of the world. They also have different engineering characteristic values in comparison to other clays. Cone penetration testing in sensitive marine clays is also different from that carried out in other soils. The misestimation of engineering characteristics from cone penetration testing can result. Temperature effects have been suspected as the reason for negative readings and erroneous estimations of engineering characteristics from cone penetration testing. Furthermore, the applicability of correlations between cone penetration test (CPT) results and engineering characteristics is ambiguous. Moreover, it is important that geotechnical engineers who need to work with these clays have background information on their engineering characteristics. This thesis provides comprehensive information on the engineering characteristics and behaviour of sensitive marine clays in Ottawa. This information will give key information to geotechnical engineers who are working with these clays on their behaviour. For the purpose of this research, fifteen sites in the Ottawa area are taken into consideration. These sites included alternative technical data from cone and standard penetration tests, undisturbed samples, field vanes, and shear wave velocity measurements. Laboratory testing carried out for these sites has resulted in acquiring engineering parameters of the marine clay, such as preconsolidation pressure, overconsolidation ratio, compression and recompression indexes, secondary compression index, coefficient of consolidation, hydraulic conductivity, clay fraction, porewater chemistry, specific gravity, plasticity, moisture content, unit weight, void ratio, and porosity. This thesis also discusses other characteristics of sensitive marine clays in Ottawa, such as their activity, sensitivity, structure, interface shear behaviour, and origin and sedimentation. Furthermore, for the purpose of increasing local experience with the use of cone and ball penetrometers in sensitive marine clays in Ottawa, three types of penetrometer tips are used in the Canadian Geotechnical Research Site No. 1 located in south-west Ottawa: 36 mm cone tip, and 40 mm and 113 mm ball tips. The differences in their response in sensitive marine clays will be discussed. The temperature effects on the penetrometer equipment are also studied. The differences in the effect of temperature on these tips are discussed. Correlations between the penetrometer results and engineering characteristics of Ottawa's clays are verified. The applicability of correlations between the testing results and engineering characteristics of sensitive marine clays in Ottawa is also presented in this thesis. Two correlations from the Canadian Foundation Engineering Manual are examined. One of these correlations is between the N60 values from standard penetration testing and undrained shear strength. The other correlation is between the shear wave velocity measurement and site class. Temperature corrections are suggested and discussed for penetrometer equipment according to laboratory calibrations. The significance of the effects due to radical temperature changes in Canada and Ottawa is discussed. Some of the main findings from this research are as follows. • The Canadian Foundation Engineering Manual presents a correlation between standard penetration tests (SPTs) and the undrained shear strength of soils. This relationship may not be applicable to sensitive marine clays in Ottawa. • Another correlation between the site class, shear wave velocity, and undrained shear strength is presented by this same manual which may not be applicable to sensitive marine clays in Ottawa. • The rotation rate for field vane testing as recommended by ASTM D2573 is slow for sensitive marine clays in Ottawa. • Correction factors applied to undrained shear strength from laboratory vane tests may not result in comparable values with the undrained shear strength obtained by using field vane tests. • Loading schemes in consolidation or oedometer testing may affect the quality of the targeted results. • Temperature corrections should be applied to penetrometer recordings to compensate for the drift in the results of these recordings due to temperature changes. • The secondary compression index to compression index ratio presented in the literature may not be the value obtained from this research.
33

Engineering Characteristics of Sensitive Marine Clays - Examples of Clays in Eastern Canada

Nader, Athir January 2014 (has links)
Sensitive marine clay in Ottawa is a challenging soil for geotechnical engineers. This type of clay behaves differently than other soils in Canada or other parts of the world. They also have different engineering characteristic values in comparison to other clays. Cone penetration testing in sensitive marine clays is also different from that carried out in other soils. The misestimation of engineering characteristics from cone penetration testing can result. Temperature effects have been suspected as the reason for negative readings and erroneous estimations of engineering characteristics from cone penetration testing. Furthermore, the applicability of correlations between cone penetration test (CPT) results and engineering characteristics is ambiguous. Moreover, it is important that geotechnical engineers who need to work with these clays have background information on their engineering characteristics. This thesis provides comprehensive information on the engineering characteristics and behaviour of sensitive marine clays in Ottawa. This information will give key information to geotechnical engineers who are working with these clays on their behaviour. For the purpose of this research, fifteen sites in the Ottawa area are taken into consideration. These sites included alternative technical data from cone and standard penetration tests, undisturbed samples, field vanes, and shear wave velocity measurements. Laboratory testing carried out for these sites has resulted in acquiring engineering parameters of the marine clay, such as preconsolidation pressure, overconsolidation ratio, compression and recompression indexes, secondary compression index, coefficient of consolidation, hydraulic conductivity, clay fraction, porewater chemistry, specific gravity, plasticity, moisture content, unit weight, void ratio, and porosity. This thesis also discusses other characteristics of sensitive marine clays in Ottawa, such as their activity, sensitivity, structure, interface shear behaviour, and origin and sedimentation. Furthermore, for the purpose of increasing local experience with the use of cone and ball penetrometers in sensitive marine clays in Ottawa, three types of penetrometer tips are used in the Canadian Geotechnical Research Site No. 1 located in south-west Ottawa: 36 mm cone tip, and 40 mm and 113 mm ball tips. The differences in their response in sensitive marine clays will be discussed. The temperature effects on the penetrometer equipment are also studied. The differences in the effect of temperature on these tips are discussed. Correlations between the penetrometer results and engineering characteristics of Ottawa's clays are verified. The applicability of correlations between the testing results and engineering characteristics of sensitive marine clays in Ottawa is also presented in this thesis. Two correlations from the Canadian Foundation Engineering Manual are examined. One of these correlations is between the N60 values from standard penetration testing and undrained shear strength. The other correlation is between the shear wave velocity measurement and site class. Temperature corrections are suggested and discussed for penetrometer equipment according to laboratory calibrations. The significance of the effects due to radical temperature changes in Canada and Ottawa is discussed. Some of the main findings from this research are as follows. • The Canadian Foundation Engineering Manual presents a correlation between standard penetration tests (SPTs) and the undrained shear strength of soils. This relationship may not be applicable to sensitive marine clays in Ottawa. • Another correlation between the site class, shear wave velocity, and undrained shear strength is presented by this same manual which may not be applicable to sensitive marine clays in Ottawa. • The rotation rate for field vane testing as recommended by ASTM D2573 is slow for sensitive marine clays in Ottawa. • Correction factors applied to undrained shear strength from laboratory vane tests may not result in comparable values with the undrained shear strength obtained by using field vane tests. • Loading schemes in consolidation or oedometer testing may affect the quality of the targeted results. • Temperature corrections should be applied to penetrometer recordings to compensate for the drift in the results of these recordings due to temperature changes. • The secondary compression index to compression index ratio presented in the literature may not be the value obtained from this research.
34

Zatěžovací zkouška a statické posouzení stropní ŽB konstrukce 1.poloviny 20.století / Static load test and the assessment ceiling of reinforced concrete structure built in the 1st half of 20th century

Málek, Jaroslav January 2012 (has links)
This master thesis deals with static load test and static assessment of selected segments of reinforced concrete ceiling construction of the Hennebique system at the Faculty of Arts at Masaryk University in Brno. This thesis contains: the execution of the static load test, the data evaluation of the static load test and the data evaluation of the complementary laboratory testing, geometric orientation of bearing elements, the checking of the ceiling placement in the peripheral position, and the diagnosis of the reinforcing of the construction. This thesis also includes the static assessment according to various standard norm rules and the numerical analysis in ATENA software program.
35

Comportamiento deformacional del suelo no saturado bajo condiciones drenadas y no drenadas

Lloret Morancho, Antonio 12 July 1982 (has links)
Se ha elaborado un modelo general para la consolidación del suelo parcialmente saturado en condiciones unidimensionales. El modelo acopla los cambios de succión con la deformación volumétrica a través del concepto de superficie de estado. Adicionalmente, se ha propuesto una metodología de cálculo para evaluar los cambios de volumen y de presión de aire y de agua en un proceso de carga no drenada. El modelo se ha implementado utilizando la técnica de los elementos finitos y se ha aplicado a diversos casos de interés geotécnico: consolidación en un suelo no saturado, infiltración con hinchamiento o colapso, desarrollo de presión de hinchamiento en condiciones confinadas y construcción capa a capa de obras de tierra. Paralelamente, en el laboratorio se ha desarrollado una célula edométrica para realizar ensayos con succión controlada. Este equipo se ha utilizado para obtener las superficies de estado de un caolín comercial y para comprobar de forma experimental la validez del modelo numérico propuesto. Se ha obtenido un buen ajuste entre las medidas de laboratorio y las predicciones del modelo si se tienen en cuenta las deformaciones debidas a la fluencia del suelo. Este trabajo constituye una aportación en la tarea de desarrollar nuevos métodos de cálculo y técnicas de laboratorio que pueden ser de utilidad en situaciones en las que el flujo acoplado con la deformación en un medio no saturado sea relevante, tal como es el caso de terraplenes, presas de tierra , barreras de residuos, etc.
36

Field and laboratory investigation on the dynamic behaviour of conventional railway track-bed materials in the context of traffic upgrade / Etude ‘in-situ’ et en laboratoire sur le comportement dynamique des matériaux constitutifs des plateformes ferroviaires classiques dans le contexte d'augmentation du trafic

Lamas-Lopez, Francisco 15 April 2016 (has links)
Comme dans d'autres pays européens, en France, les lignes classiques constituent la plupart du réseau ferroviaire (94%) et elles sont généralement âgées de plus d'un siècle. Aujourd'hui, on est demandé d’améliorer les réseaux pour faire face à une augmentation de la charge du trafic et de la vitesse de service. Dans ce contexte, ce travail de thèse vise à étudier expérimentalement l'influence de la vitesse et de la charge sur le comportement dynamique des matériaux constituant les voies classiques, à travers à la fois le suivi «in-situ» et des essais en laboratoire. Pour les études «in-situ», une section de ligne représentative du réseau classique a été sélectionnée dans le réseau français. Le site choisi a fait l’objet d’une prospection géophysique et géotechnique, ce qui a permis de définir les propriétés géotechniques des différents sols constituant la plateforme. L’impact de la vitesse du train et la charge à l'essieu sur la contrainte verticale, déflection/déformation, et en particulier leurs amplifications ont été évalués avec l’augmentation de la vitesse d’un train d'essai Intercités roulant à des vitesses différentes de 60 km/h à 200 km/h et les différentes charges à l'essieu appliquées par des voitures de passagers et la locomotive. Une analyse statistique est aussi réalisée afin d'évaluer la variabilité de la réponse de la voie et leur amplification dynamique avec la vitesse, en se basant sur les données enregistrées lors des passages de trains commerciaux. On observe que l’'amplification dynamique de la réponse de la voie due à la vitesse des trains est directement liée au rapport entre la vitesse des trains et la vitesse des ondes de surface du site. Un matériau représentative du sol intermédiaire des voies classiques a été préparé et testé dans une cellule triaxiale cyclique pour étudier son comportement mécanique. Deux types de charges, de forme sinusoïdale et de forme M, ont été appliqués et, en outre, deux teneurs en eau ont été examinés. Des variations des paramètres dynamiques des sols tels que le module élastique et le rapport d’amortissement avec le nombre de cycles ont été évalués, et les effets des paramètres de chargement tels que la forme de la charge, l'amplitude de la charge et la fréquence de charge ont été étudiés. L'effet de la teneur en eau a été étudié également. Il a été observé que la réponse de l'énergie développée pendant le chargement cyclique est un paramètre qui gouverne le comportement mécanique des sols à petit et grand nombre de cycles. En outre, la charge en forme sinusoïdale a été trouvée plus agressive que celle en forme de M parce que ce chargement sinusoïdal développe plus d'énergie, engendrant ainsi plus de déformations permanentes du sol à grand nombre de cycles, particulièrement le cas lorsque le sol est saturé. A partir des résultats obtenus sur le terrain et en laboratoire, deux modèles analytiques en 2-D ont été développés permettant de décrire la distribution de contrainte verticale et la propagation des déflections verticales. Certains paramètres mécaniques tels que les modules élastiques des couches de la voie, leurs rapports d'amortissement, leurs épaisseurs, ainsi que la vitesse moyenne des ondes de surface dans la section de voie considérée se sont révélés être les principaux paramètres contrôlant le comportement dynamique de la voie. Une comparaison entre les mesures effectuées sur le terrain et les résultats des essais en laboratoire a été également réalisée. La réponse de la voie sous différents types de trains, TER et TGV avec des charges équivalentes mais avec différentes configurations spatiales des essieux, est présentée. On observe que la réponse en énergie est plus élevée pour TGV que pour TER. Cette plus grande énergie développée suggère une plus grande agressivité vis-à-vis de la structure de la voie. Ainsi, la réponse en énergie est un indicateur important à prendre en compte lors d’un suivi du comportement mécanique d’une voie / As in other European countries, in France the conventional lines constitute the main part of the whole railway network (94%) and they are generally over a century old. Nowadays, facing the demand of upgrading both the traffic load and speed, it is of paramount importance to acquire good knowledge on the corresponding impact on the mechanical behaviour of tracks, at both short and long terms. In this context, this PhD work aims at investigating the influence of train speed and axle load on the dynamic behaviour of materials constituting the conventional track-beds, through both ‘in-situ’ monitoring and laboratory testing. For the field monitoring, a representative track was selected from the French conventional network following well-defined criteria. The selected site underwent a geophysical and geotechnical prospection, allowing the site critical speed and the geotechnical properties of different soils constituting the track-bed to be determined. The first data allowed assessing the influence of the track state conditions and the traffic loading on the measurements of each sensor. The train speed and axle load impacts on the vertical stress, deflection/strain, in particular their amplifications with speed increase were evaluated based on the data with an Intercity test train running at different speeds from 60 km/h to 200 km/h and the different axle loads applied by Coaches (105 kN/axle) and Locomotive (225 kN/axle). A statistical analysis was made to assess the variability of track response and their dynamic amplification with speed based on the data with passages of commercial trains. The dynamic amplification of track response due to train speed was found to be directly related to the ratio of train speed to the surface wave velocity. The laboratory test conditions were defined based on the field measurements. A material representative of an interlayer soil was prepared and tested in a large-scale cyclic triaxial cell to investigate its mechanical behaviour. Both Sine-shaped and M-shaped loads were applied and in addition, two water contents were considered. The variations of dynamic parameters such as resilient modulus and damping ratio with number of cycles were assessed, and the effects of loading parameters such as consolidation pressure, load shape, load amplitude and load frequency were investigated. The effect of water content was studied as well. It was observed that the response of energy developed during cyclic loading is an important parameter controlling the soil mechanical behaviour at both small and large numbers of cycles. Also, the Sine-shaped loading was found more aggressive than M-shaped loading since the former results in higher energy and therefore larger soil deformation. This is particularly the case when the soil is saturated. Based on the results obtained in the field and laboratory, two 2-D analytical models were developed allowing the description of vertical stress and vertical deflection transmissions in track-beds. Some mechanical parameters such as the moduli of track-bed layers, their damping ratios, thicknesses as well as the average track surface wave velocity were found to be the key parameters governing the track dynamic behaviour. A comparison between field and laboratory results was also made. The track response to the loading by different train types, considering equivalent loads but different spatial loading configurations from TER and TGV train axles is presented. It was found that for each monitored position in the track, the response energy was higher for TGV than for TER. This larger developed energy suggests a higher aggressiveness to the track structure. Thus, the energy response is a key indicator to be taken into account when performing a track mechanical behaviour monitoring
37

Možnosti využití různých druhů popílků při výrobě oxidovaných asfaltových izolačních pásů / Possibilities of utilisation different types of fly ashes in the production of oxidized asphalt insulation strips

Sklenářová, Radka January 2019 (has links)
Reducing the impact of modern industrial production on the environment and reducing the waste generated is undoubtedly one of the most discussed topics of the present time. In the production of fossil-fueled electricity, a large amount of fine-grained waste fly ash is generated. The possible use of ash as secondary raw materials in the construction and building materials industry is one of the many environmental challenges that the energy industry is concerned with. The aim of this diploma thesis was to verify possibilities of utilization of different kinds of power station fly ash as filler in asphalt mixtures for the production of oxidized asphalt insulation strips. The main emphasis was put on the clarification of the influence of the properties of the different types of fly ashes on the resulting rheological behavior of the mixture of asphalt binder and power fly ash, which is professionally called mastic. Mastic forms a technology-critical insulating layer in the asphalt insulation strip. The prediction of the rheological properties and therefore the workability of mastic appears to be an essential element in the management of production, especially under the conditions of the variability of input raw materials. In order to solve the assigned task it was necessary to perform detailed analyzes of fly ash properties, to select the corresponding quantification variable for assessment of the mastic processability and to find the signal fly ash properties, which appears to be a control parameter of workability. As a suitable method for assessing the processability of mastic, a shear viscosity measurement method was chosen. On the basis of the findings, it is possible to state that the use of fly ash from the production of oxidized asphalt bands is not recommended as the mastic prepared from these fly ashes are unprocessed at the assumed concentrations. The negative effect of fly ash after denitrification on the mastic processability has not been demonstrated.

Page generated in 0.0813 seconds