• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Air/Fuel Ratio Control of an SI-Engine Under Normal Operation Conditions / Luft/bränsle reglering på en SI-motor under normal kör förhållanden

Rosén, Anna January 2004 (has links)
<p>Emission from cars today is one of the biggest environmental issues, hence stringent government standards have been introduced to decrease emission. Car companies do not only have to satisfy government standards, but also meet consumer demands on increased fuel economy and good drivablility. This report will introduce controllers designed to control the air/fuel ratio in an SI engine. The engine model used is simplified. The engine components modelled include the inlet manifold, fuel dynamics, combustion and exhaust sensor. </p><p>Nonlinearities and delays are inherent in the engine dynamics and as such a Smith Predictor is utilised as the basis for controller structure to compensate for the delays. Here the Smith Predictor is combined with feedforwarding of the mass air charge, which is estimated from both the inlet and combustion models. Therefore different ways of merging the estimates are also explored. </p><p>A real engine was not accesible, thus simulators were implemented using data sets provided by General Motors. Model errors were introduced to test the controllers performance. The proposed methods should be tested on a real engine to ensure that this isa viable approach, as the simulations show it maybe promising to use in practice.</p>
2

Model-based Air and Fuel Path Control of a VCR Engine / Modellbaserad luft- och bränslereglering av en VCR-motor

Lindell, Tobias January 2009 (has links)
<p>The objective of the work was to develop a basic control system for an advancedexperimental engine from scratch. The engine this work revolves around is a Saabvariable compression engine.A new control system is developed based on the naked engine, stripped of theoriginal control system. Experiments form the basis that the control system isbuilt upon. Controllers for throttles, intake manifold pressure for pressures lessthan ambient pressure and exhaust gas oxygen ratio are developed and validated.They were found to be satisfactory. The lambda controller is tested with severalparameter sets, and the best set is picked to be implemented in the engine. Modelsnecessary for the development and validation of the controllers are developed.These models include models for the volumetric efficiency, the pressure dynamicsof the intake manifold, the fuel injectors and wall wetting.</p>
3

Air/Fuel Ratio Control of an SI-Engine Under Normal Operation Conditions / Luft/bränsle reglering på en SI-motor under normal kör förhållanden

Rosén, Anna January 2004 (has links)
Emission from cars today is one of the biggest environmental issues, hence stringent government standards have been introduced to decrease emission. Car companies do not only have to satisfy government standards, but also meet consumer demands on increased fuel economy and good drivablility. This report will introduce controllers designed to control the air/fuel ratio in an SI engine. The engine model used is simplified. The engine components modelled include the inlet manifold, fuel dynamics, combustion and exhaust sensor. Nonlinearities and delays are inherent in the engine dynamics and as such a Smith Predictor is utilised as the basis for controller structure to compensate for the delays. Here the Smith Predictor is combined with feedforwarding of the mass air charge, which is estimated from both the inlet and combustion models. Therefore different ways of merging the estimates are also explored. A real engine was not accesible, thus simulators were implemented using data sets provided by General Motors. Model errors were introduced to test the controllers performance. The proposed methods should be tested on a real engine to ensure that this isa viable approach, as the simulations show it maybe promising to use in practice.
4

Knock Detection in a Two-Stroke Engine to be Used in the Engine Management System

Höglund, Filip January 2014 (has links)
Engine knock has long been a well recognized phenomenon in the automotive industry. Detecting engine knock opens up the possibility for an indirect feedback of the engine's internal combustion without installing a pressure transducer inside the cylinder. Knock detection has mainly been used for spark advance control, making it possible to control the engine close to its knock limit in search for the optimal ignition timing. This application has to a lesser extent been applied to lightweight two-stroke engines, which is the focus of this study. The investigation features a modern chainsaw engine whose knock characteristics were first determined with a pressure transducer. The structural vibrations originating from the engine knock are filtered out of the signal from a remote located accelerometer. The knock intensity is compared with the signal from the pressure transducer which shows a correlation with an accepted extent between the two sensors. Parameters that affect the knock intensity have also been investigated. These include engine temperature, different types of fuel and ignition timings.
5

Model-based Air and Fuel Path Control of a VCR Engine / Modellbaserad luft- och bränslereglering av en VCR-motor

Lindell, Tobias January 2009 (has links)
The objective of the work was to develop a basic control system for an advancedexperimental engine from scratch. The engine this work revolves around is a Saabvariable compression engine.A new control system is developed based on the naked engine, stripped of theoriginal control system. Experiments form the basis that the control system isbuilt upon. Controllers for throttles, intake manifold pressure for pressures lessthan ambient pressure and exhaust gas oxygen ratio are developed and validated.They were found to be satisfactory. The lambda controller is tested with severalparameter sets, and the best set is picked to be implemented in the engine. Modelsnecessary for the development and validation of the controllers are developed.These models include models for the volumetric efficiency, the pressure dynamicsof the intake manifold, the fuel injectors and wall wetting.

Page generated in 0.0289 seconds