• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 10
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 85
  • 19
  • 18
  • 18
  • 18
  • 18
  • 17
  • 17
  • 17
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Statistical Models of the Lambert Road Bridge: Changes in Natural Frequencies Due to Temperature

Foust, Nickolas Ryan 01 May 2014 (has links)
Structural health monitoring (SHM) using ambient vibration has become a tool in evaluating and assessing the condition of civil structures. For bridge structures, a vibration-based SHM system uses the dynamic response of a bridge to measure modal parameters. A change in a structure’s modal parameters can indicate a physical change in the system, such as damage or a boundary condition change. These same modal parameters are sensitive to environmental factors, mainly temperature. Statistical models have been utilized to filter out modal parameter changes influenced by temperature and those caused by physical changes. Statistical models also help describe the relationship between modal parameters and environmental conditions. The Lambert Road Bridge is a concrete integral abutment bridge located south of Sacramento, California, and is studied through this paper. A SHM system has been installed and has been recorded for 3 years. Three months of SHM records will be used to understand how the bridge’s natural frequencies typically change due to temperature. First, temperature was observed to be the driving force behind many of the SHM records. A linear relationship was found between the structure’s natural frequency and temperature. Collinearities between potential predictor variables were noticed. Initial linear regression analyses were completed with a bridge average temperature. Certain strain gauge regression models were used as “base” models to eliminate other regression models that potentially were altered by aliasing. These base models, and the other seven corresponding models, showed a direct linear relationship between temperature and natural frequency. It was concluded that changes in boundary conditions due to bridge expansion have a greater effect on global dynamic properties than material property changes due to temperature. Stepwise linear regression followed the initial regression modeling. Eight thermocouple readings were consistently being selected in the stepwise process and were chosen to be the main predictor variables. Due to collinearities among the predictor variables, ridge regression was completed to eliminate any unstable variables. The final six sensors’ locations indicate that longitudinal, transverse, and depth gradients are all important factors in the linear regression models of this relationship. Comparing the multiple linear regression models to single-variable regression models with the highest averaged adjusted R2 values, a minimum percent difference of 21% and 19% was seen for the first and second natural frequencies, respectively. It was also concluded that these multiple linear regression models explained more of the variability in the natural frequencies and would be a better model to use to filter out temperature effects.
32

Quantitative Measurement of Cerebral Hemodynamics During Activation of Auditory Cortex With Single- and Multi-Distance Near Infrared Spectroscopy

Mohammad, Penaz Parveen Sultana 29 June 2018 (has links)
Functional Near Infrared Spectroscopy (fNIRS) is a safe, low-cost, non-invasive opti-cal technique to monitor focal changes in brain activity using neurovascular coupling and measurements of local tissue oxygenation, i.e., changes in concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR)[42]. This thesis utilizes two fNIRS approaches to measure hemodynamic changes associated with functional stimulation of the human auditory cortex. The first approach, single-distance continuous wave NIRS (CW-NIRS) utilizes relatively simple instrumentation and the Modified-Beer Lambert (MBL) law to estimate activation induced changes in tissue oxygenation (∆CHbO and ∆CHbR)[17]. The second more complex approach, frequency domain NIRS (FD-NIRS), employs a photon diffusion model of light propagation through tissue to measure both baseline (CHbO and CHbR), and stimulus induced changes in oxygenated and deoxygenated hemoglobin[10]. FD-NIRS is more quantitative, but requires measurements at multiple light source-detector separations and thus its use in measuring focal changes in cerebral hemodynamics have been limited. A commercial FD-NIRS instrument was used to measure the cerebral hemodynamics from the right auditory cortex of 9 adults (21 ± 35 years) with normal hearing, while presented with two types of auditory stimuli: a 1000 Hz Pure tone, and Broad band noise. Measured optical intensities were analyzed using both MBL and photon diffusion approaches. Oxygenated hemoglobin was found to increase by 0.351 ± 0.116 µM and 0.060 ± 0.084 µM for Pure tone and Broad band noise stimuli, when analyzed by the MBL method at the ‘best’ source-detector separation. On average (across all sources), MBL analysis estimated an increase in CHbO of 0.100±0.075 µM and 0.099±0.084 µM respectively for Pure tone and Broad band noise stimulation. In contrast, the frequency domain analysis method estimated CHbO to increase by −0.401 ± 0.384 µM and −0.031 ± 0.358 µM for Pure tone and Broad band noise stimulation respectively. These results suggest that although more quantitative, multi-distance FD-NIRS may underestimate focal changes in cerebral hemodynamics that occur due to functional activation. Potential reasons for this discrepancy, including the partial volume effect, are discussed.
33

Les avoueries des églises liégeoises, XIe-XVe siècles

Carré, Pascal 23 April 2009 (has links)
Cette étude traite de lavouerie ecclésiastique entre les XIe et XVe siècles dans les possessions territoriales des églises liégeoises. Celles-ci incluent la cathédrale Saint-Lambert, les sept collégiales et les deux abbayes de Saint-Jacques et Saint-Laurent. Outre lhistoire et lévolution de cette institution, notre travail englobe le statut social, les droits, les pouvoirs et le rôle militaire des avoués ecclésiastiques. Nous mettrons également laccent sur les contestations entre les églises et leurs avoués ainsi que sur lintervention épiscopale dans ce domaine.
34

The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel Oximetry

LeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
35

The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel Oximetry

LeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.
36

The feasibility study on outdoor large scale microalgae culture

Cheng, Jen-hsuan 13 July 2011 (has links)
Nannochloropsis oculata is one of promising oleaginous microalga, containing a plenty of fat which can be extracted and transformed into biodiesel. The purpose of this study is to develop a closed system, Outdoor Temperature Controllable Photobioreactor System (OTCPS), to cultivate the algae in pure and massive quantity. In this research, the seawater from Sizihwan is used as the cultivation liquid. Lambert-Beer¡¦s Law is adopted to calculate the attenuation coefficient of light intensity in a water column. By adjusting the water depth, not only the light intensity but also the water temperature could be controlled at the optimal situation and thus avoids unfavorable temperature changing in harsh weather. Therefore to establish the relationship of light intensity and water temperature is critical for the success of growing microalgae in outdoor conditions. The temperature variation of culture medium can be explained by the heat transfer theorem. In this study, the heat radiation mechanism and the first order of Fourier heat conductivity were adopted to simulate the liquid temperature change. The simulation results have shown good agreement with the filed data especially during daytime. The experimental results reveal that the winter grow rate of Nannochloroposis oculata is 0.33 d-1 , while the summer growth rate is only 0.20 d-1 . This may imply that the high temperature is an inhibition to the growth of Nannochloroposis oculata. Besides when the cell density of microalgae is getting higher, each individual alga may create mutual shading effect and thus reduce the photosynthetic efficiency. In conclusion, the proposed photobioreactor has been successfully tested in summer, autumn, and winter at Kaohsiung, in the south of Taiwan. This indicates that this device can be broadly used in the subtropic zone
37

Design space pruning heuristics and global optimization method for conceptual design of low-thrust asteroid tour missions

Alemany, Kristina 13 November 2009 (has links)
Electric propulsion has recently become a viable technology for spacecraft, enabling shorter flight times, fewer required planetary gravity assists, larger payloads, and/or smaller launch vehicles. With the maturation of this technology, however, comes a new set of challenges in the area of trajectory design. Because low-thrust trajectory optimization has historically required long run-times and significant user-manipulation, mission design has relied on expert-based knowledge for selecting departure and arrival dates, times of flight, and/or target bodies and gravitational swing-bys. These choices are generally based on known configurations that have worked well in previous analyses or simply on trial and error. At the conceptual design level, however, the ability to explore the full extent of the design space is imperative to locating the best solutions in terms of mass and/or flight times. Beginning in 2005, the Global Trajectory Optimization Competition posed a series of difficult mission design problems, all requiring low-thrust propulsion and visiting one or more asteroids. These problems all had large ranges on the continuous variables - launch date, time of flight, and asteroid stay times (when applicable) - as well as being characterized by millions or even billions of possible asteroid sequences. Even with recent advances in low-thrust trajectory optimization, full enumeration of these problems was not possible within the stringent time limits of the competition. This investigation develops a systematic methodology for determining a broad suite of good solutions to the combinatorial, low-thrust, asteroid tour problem. The target application is for conceptual design, where broad exploration of the design space is critical, with the goal being to rapidly identify a reasonable number of promising solutions for future analysis. The proposed methodology has two steps. The first step applies a three-level heuristic sequence developed from the physics of the problem, which allows for efficient pruning of the design space. The second phase applies a global optimization scheme to locate a broad suite of good solutions to the reduced problem. The global optimization scheme developed combines a novel branch-and-bound algorithm with a genetic algorithm and an industry-standard low-thrust trajectory optimization program to solve for the following design variables: asteroid sequence, launch date, times of flight, and asteroid stay times. The methodology is developed based on a small sample problem, which is enumerated and solved so that all possible discretized solutions are known. The methodology is then validated by applying it to a larger intermediate sample problem, which also has a known solution. Next, the methodology is applied to several larger combinatorial asteroid rendezvous problems, using previously identified good solutions as validation benchmarks. These problems include the 2nd and 3rd Global Trajectory Optimization Competition problems. The methodology is shown to be capable of achieving a reduction in the number of asteroid sequences of 6-7 orders of magnitude, in terms of the number of sequences that require low-thrust optimization as compared to the number of sequences in the original problem. More than 70% of the previously known good solutions are identified, along with several new solutions that were not previously reported by any of the competitors. Overall, the methodology developed in this investigation provides an organized search technique for the low-thrust mission design of asteroid rendezvous problems.
38

Transcendental logic and modality in Kant's theoretical and practical projects /

Rosenkoetter, Timothy. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Philosophy, Aug. 2003. / Includes bibliographical references. Also available on the Internet.
39

The Numerical Computation Method of Physical Quantity of Dust Concentration Based on Matlab

Liu, Yang, Wang, Ziyu January 2015 (has links)
With the rapid development of the industry all over the world, the consumption of fossil fuel of human activities has reached an extremely high level which result in an incredible dust emission level nowadays. As one of the major environment challenges today, dust pollution has become a vital issue that the human beings have to face and resolve.    To tackle the dust pollution problem, a reliable measurement of the dust concentration level is essential. In recent years, methods with different principles are used to detect the dust concentration have been developed. The methods developed based on the scattering principle and the extinction principle for dust concentration measurement have a series of virtues such as high measurement speed, excellent precision and can be useful for real time monitoring.    This thesis reviewed the popular theories that are applied in the field which are light scattering (Mie theory) and light extinction (Lambert-beer theory). Matlab simulation is used to verify the possibility of the determined physical quantities related to the concentration measurement in the theory analysis. A new method using the ratio of scattering intensity and extinction intensity is discussed in this thesis providing a more accurate result eliminating the drawbacks of the scattering method and the extinction method.
40

The Influence of Red Blood Cell Scattering in Optical Pathways of Retinal Vessel Oximetry

LeBlanc, Serge E. 18 February 2011 (has links)
The ability to measure the oxygen saturation, oximetry, of retinal blood both non-invasively and in-vivo has been a goal of eye research for years. Retinal oximetry can in principle be achieved from the measurement of the reflectance spectrum of the ocular fundus. Oximetry calculations are however complicated by the scattering of red blood cells, the different pathways of light through blood and the ocular tissues that light interacts with before exiting the eye. The goal of this thesis was to investigate the influence of red blood cell scattering for different light paths relevant to retinal oximetry. Results of in-vitro whole blood experiments found calculated oxygen saturation differences between blood samples measured under different retinal light paths, and these differences did not depend on the absorbance path length. We also showed that the calculated oxygen saturation value determined by a multiple linear regression Beer-Lambert absorbance model depended on the wavelength range chosen for analysis. The wavelength dependency on the calculated oxygen saturation value is due in part to the correlation that exists between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficient spectra and to errors in the assumptions built into the Beer-Lambert absorbance model. A wavelength region with low correlation between the oxyhaemoglobin and deoxyhaemoglobin extinction coefficients was found that is hypothesized to be a good range to calculate oxygen saturation using a multiple linear regression approach.

Page generated in 0.2034 seconds