• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 47
  • 10
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 311
  • 311
  • 311
  • 63
  • 58
  • 50
  • 48
  • 42
  • 41
  • 35
  • 35
  • 34
  • 33
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Suburban Succession and Stream Dynamics

McGillewie, Sara B. 12 1900 (has links)
Increasingly higher numbers of people are moving into urbanizing environments, yet our understanding of ecosystem consequences of rapid urbanization is still in its infancy. In this dissertation, I assessed dynamics of residential landscapes during suburban succession and consequences for ecosystem functioning. First, I used a space-for-time approach to quantify more than a century of suburban succession in the Dallas – Fort Worth metroplex (DFW). Attributes of residential landscape plant diversity and habitat complexity were quantified for 232 individual properties nested within 14 neighborhoods constructed between 1906 and 2020. Suburban succession progressed from simple turf lawns with limited habitat complexity to landscapes dominated by deciduous trees and high habitat complexity, but homeowner decisions related to landscape management affect the rate of that transition and the number of plants and taxa present. Next, I used the novel spatial construct of "neighborhoodsheds" to test for effects of suburban succession on carbon export, and found that the proportion of carbon derived from C3 vs. C4 plants was affected by neighborhood plant community structure (i.e. greater proportion of trees and shrubs primarily in later stages of suburban succession). Finally, I conducted a mesocosm experiment to test effects of changes in allochthonous inputs during suburban succession on aquatic ecosystem functioning. The proportion of carbon from C3 vs. C4 sources interacted with time to affect abundance of emergent mosquitoes and chironomids. This work sets the stage for further research on urban ecology in DFW and provides conceptual advances for the study of urban ecosystems more broadly.
92

Modeling lake ecosystem change within coupled human-natural systems to improve water resources management

Ward, Nicole Kristine 24 May 2021 (has links)
Lake ecosystems are sentinels of change in a landscape, integrating upstream terrestrial and aquatic effects of climate and land use drivers. Climate and land use change is mediated by socio-cultural and economic processes, resulting in complex responses in lake ecosystems as a part of coupled natural human (CNH) systems. I used multiple approaches within a CNH framework to better understand the effects of climate and land use on freshwater-human interactions. I first conducted a literature synthesis and found that slow processes (e.g., cultural change) are underrepresented in CNH-freshwater models relative to fast processes (e.g., daily decision-making), though both fast and slow processes are key to assessing decadal trajectories of change. I then examined the interaction of fast and slow variables in lakes through two ecosystem modeling assessments. I used a process-based model to assess drivers of annual chlorophyll-a concentration, a metric of phytoplankton biomass, over three decades in a low-nutrient lake and found that increases in summer median versus maximum chlorophyll-a are related to rising air temperatures and external phosphorus load, respectively. I also conducted a single-year study in the same lake to examine variability in site-specific gross primary production (GPP) and respiration (R), two fast-changing variables that serve as robust indicators of slowly-changing trophic state. I found that higher rates of near-shore GPP and R were partially due to stream-related variables, providing insight into how inflowing streams connect to in-lake processes. These two ecosystem assessment studies indicate fast-changing response variables can be indicative of specific slow-changing variables: annual maximum versus median chlorophyll-a can be used to assess differing impacts from climate and land use change, and estimation of GPP and R near inflow streams integrate sub-catchment drivers. Finally, I evaluated the effectiveness of an online model visualization relating current land use decisions, a fast process, to future water quality outcomes, a slow process, and found that the visualization was effective in altering property owner beliefs and intended behavior related to applying lawn fertilizer and installing waterfront buffers. Collectively, this work advances our understanding of how fast and slow variables interact to improve assessments of changes in CNH-lake systems. / Doctor of Philosophy / People depend on freshwater lakes for many reasons. However, lake water quality is threatened by climate change and increased land development. Here, I examined the complex interactions between people and freshwater lakes, using different types of computer simulation models to represent lake ecosystems. First, I found that the interaction of long-term and short-term processes are key in understanding trajectories of water quality change. For example, shorter term processes, such as people's decision-making about fertilizer use, may result in significant water quality changes over the long-term. Second, I used a lake ecosystem model to identify how long-term increases in air temperature due to climate change will cause average summer water quality to worsen. However, climate impacts may be offset if current land use change is properly managed to reduce runoff, thereby maintaining high water quality into the future. Third, I found that streams flowing into the lake directly influence short-term variations in water quality. Finally, I evaluated the effectiveness of an interactive online visualization in educating lakefront property owners about the importance of current human behavior for long-term water quality in the lake. After using the visualization, property owners were more likely to avoid applying lawn fertilizer and install waterfront buffers, in line with the educational goal. Management that incorporates models of short- and long-term processes in society and lakes will provide a better understanding of future trajectories of ecosystem change. Collectively, this work highlights connections between society and lake ecosystems that can be used to help manage water quality for generations to come.
93

A Coupled Hydrologic-Economic Modeling Framework for Evaluating Alternative Options for Reducing Watershed Impacts in Response to Future Development Patterns

Amaya, Maria Teresa 28 April 2022 (has links)
Economic input-output (I-O) and watershed models provide useful results but when seeking to integrate these systems, the structural, spatial, and temporal differences between these models must be carefully considered. To reconcile these differences, a hydrologic-economic modeling framework is designed to couple an economic model with a watershed model. A physically constrained, I-O model, RCOT, is used to represent the economic system in this framework because it provides sectoral detail for a regional economy and calculates physical resource quantities used by these sectors. Uniquely, it also allows for technology options for all sectors and minimizes the resource use based on environmental constraints imposed by the watershed, which adds complexity to the representation of the economic system and its interactions with the watershed system. To represent the watershed system in this framework, the Hydrological Simulation Program-Fortran (HSPF) is used. An HSPF model has been calibrated to represent the hydrological processes of Cedar Run Watershed by the Occoquan Watershed Monitoring Laboratory (OWML). Thus, the capabilities of this framework are demonstrated using strategic scenarios developed to examine future development patterns that may occur within Fauquier County, northern Virginia, and its local basin, Cedar Run Watershed. The scenarios evaluate both the downstream and seasonal impacts on water flow and nitrogen concentration within the watershed, and the changes made within the economic system in response to these impacts. For these scenarios, the most efficient solution is the one that minimizes the use of resource inputs within the economic sectors, including developed land, water withdrawn, and applied nitrogen, which in turn inform watershed health. The scenario results demonstrate that this coupled hydrologic-economic modeling framework can overcome the spatial differences of the individual models and can capture the interactions between watershed and economic systems at a temporal resolution that expands the types of questions one can address beyond those that can be analyzed using these models separately. / Doctor of Philosophy / Water is an essential commodity for human survival, a necessary resource for many industries, and a crucial indicator of environmental health. Rising human populations have created stress on the natural supply of water resources while corresponding economic activities have contributed to the deterioration in water quality. Therefore, it is essential to identify pathways for addressing water use and contamination while also supporting economic progress to achieve sustainable development. The region of study is Fauquier County, located in northern Virginia, USA. This county has a long association with agricultural production, but it has been experiencing development pressure due to its proximity to Washington DC (50 km southwest). Within Fauquier County lies Cedar Run Watershed (498 km2), a sub-basin of Occoquan Watershed (1,515 km2). Occoquan Watershed drains into the Occoquan Reservoir, which is a drinking water source for close to two million residents in northern Virginia. The motivation of this research is to design a coupled modeling framework that allows insight to be gained into the interactions that occur between watershed and economic systems. This framework is then used to evaluate how changes in economic activities will cause changes in water use and contamination levels within Cedar Run Watershed and vice versa. By designing strategic scenarios to provide implications about future development patterns that may occur in the region, changes can be anticipated, and conclusions can be reached.
94

Evaluating the interactions of crop management, carbon cycling, and climate using Earth system modeling and remote sensing

Graham, Michael William 27 August 2019 (has links)
Crop management practices, such as soil tillage and crop residue management, are land management activities with potentially large impacts on carbon (C) cycling and climate at the global scale. Improvements in crop management practices, such as conservation tillage or 'no-till' (NT), have been proposed as climate change mitigation measures because such practices may alter C cycles through increased sequestration of soil C in agricultural soils. Despite their potential importance, regional to global scale data are lacking for many crop management practices, and few studies have evaluated the potential impact of the full range of crop management practices on C cycling and climate at the global scale. However, monitoring of crop management practices is crucial for assessing spatial variations in management intensity and informing policy decisions. Inclusion of crop management practices in Earth system models used for assessing global climate is a key requirement for evaluating the overall effects of different crop management practices on C cycling and their potential to mitigate climate change. Studies in this dissertation seek to address these issues by: (1) evaluating the efficacy of remote sensing methods for monitoring differences in soil tillage and crop residue management practices in Iowa; (2) incorporating soil tillage practices into an Earth system model and assessing the potential for soil C sequestration and climate change mitigation through adoption of NT practices; (3) assessing the historical impact of including the full range of crop management practices (residue harvest, grain harvest, soil tillage, irrigation, and fertilization) on changes in C cycling associated with land use and land cover change (LULCC) to crops in an Earth system model. The remote sensing study found that performance of the minimum Normalized Difference Tillage Index (minNDTI) method for assessing differences in tillage and residue management was below average compared to previous studies, even when using imagery from both Landsat 8 and Sentinel-2A sensors. Accurate assessment of these practices using minNDTI was hindered by issues with image quality and inability to obtain sufficient cloud-free, time series imagery during the critical planting window. Remote sensing research aimed at obtaining regional to global scale data on tillage and residue management practices is likely to continue to face these issues in the future, but further research should incorporate additional sensors and assess the efficacy of the minNDTI method for multiple locations and years. Adoption of NT practices in the Community Land Model, which is the land component of the Community Earth System Model, resulted in a cumulative soil C sequestration of 6.6 – 14.4 Pg C from 2015 – 2100 under a future climate change scenario (Representative Concentration Pathway 8.5), and cumulative soil C sequestration was equal to approximately one year of present-day fossil fuel emissions. Adjusting for areas where NT is already practiced had minor impacts on cumulative soil C storage, reducing gains in soil C from NT adoption by 0.4 – 0.9 Pg C globally. These results indicate that soil C sequestration and potential for climate change mitigation through NT may be more limited than has been anticipated elsewhere. Soil C sequestration via NT adoption was highest in temperate regions of developed countries with high initial soil C contents, indicating these areas should be targeted for NT adoption. Simulating the full range of crop management practices in the Community Land Model resulted in an increase in C emissions due to LULCC of 29 – 38 Pg C compared to scenarios with generic crops and model defaults. Individual crop management practices with the largest impact on LULCC emissions were crop residue harvest (18 Pg C), followed by grain harvest (9 Pg C) and soil tillage (5 Pg C). Although implementation of crop residue harvest and soil tillage was extreme in this study, these results imply that Earth system models may underestimate emissions from LULCC by excluding the full range of crop management practices. Studies in this dissertation corroborate the importance of crop management practices for C cycling and climate, but further research on these management practices is needed in terms of data collection, improving process-level understanding, and inclusion of these practices in Earth system models. / Doctor of Philosophy
95

Climate change effects on migratory birds and on the ecology and behaviour of the willow warbler (Phylloscopus trochilus)

Hedlund, Johanna January 2015 (has links)
Recent global climate change is influencing the behaviour and ecology of species worldwide. Birds are typical systems to study in this context, as they are often migratory and thus subjected to a variety of environmental effects. This thesis employs the use of long-term ringing records, field observations, historical maps and historical volunteer observations with the aim of describing behavioural and ecological responses of birds to the current environmental change. An investigation into the spring arrival, reproduction and autumn departure in willow warblers (Phylloscopus trochilus) breeding at a southern study site in Sweden (65°N 18°E) showed that all three phenological events had advanced in parallel. Thus birds arrive earlier, start breeding earlier and leave Sweden earlier, with the breeding period staying the same in length. By teasing apart the migratory responses of different individuals, it became clear that particularly early arriving males and early departing juveniles had advanced migration. However, willow warblers migrating past a northern study site in Sweden (65°N 23°E) displayed no change in autumn departure. When migration in the two regionally separate populations were analyzed in relation to climatic variables, the results indicated that foremost a combined effect of growing season onset and the North Atlantic Oscillation influenced migratory timing, and only in individuals that had advanced migration. As growing season onset had advanced at both regions, but only elicited migratory change in southern willow warblers, it is proposed that intra-specific difference between populations prepare them differently to climate change. Willow warblers breeding at northern latitudes were also displaying absence of an otherwise common behaviour of the species: philopatry. It is suggested that the climate induced change in onset of the growing season, coupled with an increase in available territories, could have enabled a southern influx of dispersal-prone birds adopting a less philopatric breeding behaviour. Availability of territories was also studied in southern Sweden, in relation to 100 years of land use change and future climate change effects on forestry. The mass-conversion of grazed forest into coniferous sylvicultures that has occurred in Sweden 1900-2013 was shown to have negatively affected territory availability for willow warblers. The second most common bird species in Sweden, the chaffinch (Fringilla coelebs), was however shown to be largely unaffected. In a future scenario where rising temperatures will increase growth rates of trees, harvest rotation will be faster and both sylvicultures and logged areas will increase in coverage, favouring both species. Thus commonness in terms of landscape and species occurrence has altered historically and is dynamically linked. Historic perspectives were also applied to observations of spring arrival of 14 migratory bird species. A relative comparison of two data sets, collected over 140 years, revealed that short-distance migrants have changed their spring arrival more than long-distance migrants in southern Sweden. In conclusion, the results of this thesis provide insights into climate change effects on avian behaviour and ecology, document unique observations and contribute with a great spectrum of knowledge, from exact details on responses by individual birds, through long-term changes in populations to historical perspectives on shifts in entire landscapes / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Manuscript.</p>
96

Intensification of paddy cultivation in relation to changing agrobiodiversity patterns and social-ecological processes in South India

Betz, Lydia 16 July 2015 (has links)
No description available.
97

Modeling oil palm monoculture and its associated impacts on land-atmosphere carbon, water and energy fluxes in Indonesia

Fan, Yuanchao 25 April 2016 (has links)
In dieser Studie wird ein neues Modul “CLM-Palm” für mehrjährige Nutzpflanzen zur Modellierung einer funktionellen Gruppe (plant functional type) für Ölpalmen im Rahmen des Community Land Models (CLM4.5) entwickelt, um die Auswirkungen der Transformation eines tropischen Waldes in eine Ölpalmenplantage auf die Kohlenstoff-, Wasser- und Energieflüsse zwischen Land und Atmosphäre zu quantifizieren. Um die Morphologie der Ölpalme möglichst detailgetreu darzustellen (das heißt, dass ungefähr 40 Phytomere einen mehrschichtigen Kronenraum formen), wird in dem Modul CLM-Palm eine phänologische und  physiologische Parametrisierung auf Skalen unterhalb des Kronraums eingeführt, so dass jedem Phytomer sein eigenes prognostisches Blattwachstum und seine Erntekapazität zugeordnet wird, während Stamm und Wurzeln gemeinsam genutzt werden. Das Modul CLM-Palm wurde ausschließlich für Ölpalmen getestet, ist aber auch für andere Palmarten (z. B. Kokospalmen) interessant.  Im ersten Kapitel dieser Arbeit werden Hintergrund und Motivation dieser Arbeit vorgestellt. In Kapitel 2 wird die Entwicklung des Haupt- bzw. Kernmodells beschrieben,  inklusive Phänologie und Allokationsfunktionen zur Simulation des Wachstums und des Ertrags der Palme PFT, wodurch die Basis zur Modellierung  der biophysikalischen und biogeochemicalischen Kreisläufe innerhalb dieser Monokultur bereitgestellt wird. Die neuen Parameter für die Phänologie und die Allokation wurden sorgfältig mit Feldmessungen des Blattflächenindexes (LAI), des Ertrags und der Nettoprimärproduktion (NPP) verschiedener Ölpalmenplantagen auf Sumatra (Indonesien) kalibriert und validiert. Die Validierung zeigte die Eignung von CLM-Palm zur adäquaten Vorhersage des mittleren Blattwachstums und Ertrags für verschiedene Standorte und repräsentiert in ausreichendem Maß die signifikante Variabilität bezüglich des Stickstoffs und Alters von Standort zu Standort.  In Kapitel 3 wird die weitere Modellentwicklung und die Implementierung eines Norman-Mehrschichtmodells für den Strahlungstransport vorgestellt, das an den  mehrschichtigen Kronenraum der Ölpalme angepasst ist. Dieses Norman-Mehrschichtmodell des Strahlungstransports zeigte im Vergleich zu dem in CLM4.5 implementierten Standardmodell (basierend auf großen Blättern) bei der Simulation der Licht-Photosynthese-Kurve leichte Verbesserungen und hat  lediglich marginale Vorteile gegenüber dem ebenfalls in CLM4.5 implementierten alternativen statistischen Mehrschichtmodell.  Dennoch liefert das Norman-Modell eine detailliertere und realistischere Repräsentation des Belaubungszustands wie etwa dem dynamischen LAI, der Blattwinkelverteilung in verschiedenen Höhen, und ein ausgewogeneres Profil der absorbierten photosynthetisch aktiven Strahlung (PAR). Die Validierung mit Hilfe der Eddy-Kovarianz Flussdaten zeigte die Stärke von CLM-Palm bei der Simulation der Kohlenstoffflüsse, offenbarte aber auch Abweichungen in der simulierten Evapotranspiration (ET), dem sensiblen und dem latenten Wärmefluss (H und LE). Eine Reihe von hydrologischen Messungen im Kronenraum wird in Kapitel 4 beschrieben. Dies beinhaltet eine Adaption des in CLM4.5 eingebauten Standardmodells für Niederschlag, Interzeption und Speicherfunktionen für die speziellen Merkmale eines Ölpalmen-Kronenraums. Die überarbeitete Hydrologie des Kronenraums behob die Probleme bei der Simulation der Wasserflüsse (ET und Transpiration im Kronenraum) und verbesserte die Energieaufteilung zwischen H und LE. Kapitel 5 dokumentiert die Implementierung eines neuen dynamischen Modells für Stickstoff (nitrogen, N) in CLM-Palm zur Verbesserung der Simulation der C- und N-Dynamik, insbesondere mit Bezug auf den N-Düngeeffekte in landwirtschaftlich genutzten Systemen. Das dynamische N-Modell durchbricht die Limitierung des Standardmodells in CLM4.5, mit fixierter C-N-Stöchiometrie und erlaubt die Variation des C:N-Verhältnisses in lebendem Gewebe in Abhängigkeit der N-Verfügbarkeit und dem N-Bedarf der Pflanze.  Eine Reihe von Tests bezüglich der Düngung zeigte beispielhaft die Vorteile des dynamischen N-Modells, wie zum Beispiel die Verbesserung des Netto-Ökosystemaustauschs (net ecosystem exchange, NEE), ein realistischeres C:N-Verhältnis im Blatt, eine verbesserte Repräsentation der Effizienz des Stickstoffeinsatzes (nitrogen-use efficiency, NUE), sowie der Effekte von Düngung auf Wachstum und Ertrag. Abschließend wird in Kapitel 6 eine Anwendungsstudie gezeigt, in der die zentralen Modellentwicklungen aus den vorangegangenen Kapiteln verwendet werden. Eine junge und eine  erntereife Ölpalmenplantage sowie ein Primärregenwald wurden simuliert und verglichen. Sie wiesen klare Unterschiede in den C-Flüssen und in den biophysikalischen Merkmalen (z.B. ET und Oberflächentemperatur) auf. Ölpalmenplantagen können durch Wachstumsentwicklung (im Alter von etwa 4 Jahren)  ebenso hohe und darüber hinausgehende C-Assimilation und Wassernutzungsraten erreichen wie Regenwälder, haben jedoch im Allgemeinen eine höhere Oberflächentemperatur als eine bewaldete Fläche – dies gilt auch für erntereife Plantagen. Eine Simulation des Übergangs, die zwei Rotationsperioden mit Neubepflanzungen alle 25 Jahre umspannt, zeigte dass der Anbau von Ölpalmen auf längeren Zeitskalen lediglich in etwa die Hälfte des ursprünglichen C-Speichers der bewaldeten Fläche vor dem Kahlschlag  rückspeichern kann. Das im Boden gespeicherte C nimmt in einer bewirtschafteten Plantage aufgrund des begrenzten Streurücklaufs langsam und graduell ab. Insgesamt reduziert die Umwandlung eines Regenwaldes in eine Ölpalmenplantage die langfristigen C-Speicher und die Kapazität der Fläche zur C-Sequestrierung und trägt potentiell zur Erwärmung der Landoberfläche bei – trotz des schnellen Wachstums und der hohen C-Assimilationsrate einer stark gedüngten Plantage. Zur Einschätzung der regionalen und globalen Effekte der Ausbreitung der Kultivierung von Ölpalmen auf die Austauschprozesse zwischen Land und Atmosphäre und auf das Klima ist es notwendig eine Upscaling-Studie durchzuführen.
98

Changes in eco-hydrological functioning after tropical rainforest transformation to rubber and oil palm plantations

Röll, Alexander 30 September 2015 (has links)
No description available.
99

Land-Use Intensification in Grazing Systems: Plant Trait Responses and Feedbacks to Ecosystem Functioning and Resilience

Laliberté, Etienne January 2011 (has links)
Land-use change is the single most important global driver of changes in biodiversity. Such changes in biodiversity, in turn, are expected to influence the functioning of ecosystems and their resilience to environmental perturbations and disturbances. It is widely recognised that the use of functional traits and functional diversity is best for understanding the causes and functional consequences of changes in biodiversity, but conceptual development has outpaced empirical applications. This thesis explores these ideas in grazing systems, which are expected to undergo rapid intensification of fertiliser use and grazing pressure to meet the growing global demand for livestock products. First, a flexible framework for measuring different facets of functional diversity is described, and a new multidimensional functional diversity index, called functional dispersion (FDis), is presented. Second, two vegetation sampling methods are compared with regard to their ability to detect changes in vegetation composition. Third, shifts in plant trait distributions following land-use changes are quantified and compared to null models, and a maximum entropy approach is used to quantify the direction and strength of selection on each trait. Fourth, it is shown that these shifts in trait distributions have cascading effects on primary production, litter decomposition, soil respiration, and ultimately soil carbon sequestration. Finally, data from 18 land-use intensity gradients are used to show that land-use intensification reduces functional redundancy and response diversity, two components of biodiversity that are thought to influence ecosystem resilience to future disturbances. This study illustrates (i) the importance of considering species functional differences to understand how plant communities react to changes in soil resource availability and grazing pressure, and (ii) how such changes directly, indirectly, and interactively control ecosystem functioning, as well as (iii) increasing the vulnerability of ecosystems to future disturbances.
100

The impacts of human land-use change on avian diversity and associated ecosystem functions

Bregman, Tom P. January 2014 (has links)
Understanding the impacts of land-use change on biodiversity and the ecosystem services that it provides is of great importance given unprecedented growth of the human population. Past studies attempting to explore these impacts have described the overall structure of communities (i.e. species richness and trait diversity) across gradients of local scale degradation and fragmentation, and have sought to identify whether the loss of species following land-use change is non-random. Yet, despite a wealth of research we still lack a generalised understanding of how land-use change impacts on traits responsible for determining species sensitivity and their role within ecosystems, particularly for vertebrates. Moreover, despite the importance of niche-based processes in the assembly of communities, we have not yet elucidated whether these are important in mediating the collapse of communities in human-dominated landscapes. To fill these existing research gaps, I collated comprehensive avian species inventories from fragmented and degraded forests and compared their structure with communities existing in continuous forests. In Chapter 2, I tested whether sensitivity of species to forest fragmentation varies between the temperate zone and the tropics and whether there are key differences in the size of fragments required to maintain ecosystem processes in these regions. I found that sensitivity to fragmentation varies according to functional group and body mass, with the prevalence of insectivores and large frugivores declining in relation to fragment size, particularly in tropical fragments smaller than 100 ha. In Chapter 3, I tested whether functional diversity and the mean position of trait diversity of insectivores and frugivores, changed across a gradient of intensifying land-use change. I found a decline in the functional diversity of forest species and a shift in the mean community traits for both forest and non-forest species. In Chapter 4, I tested whether the structure of tropical bird communities are influenced by species interactions in a fragmented landscape. I found increasing over-dispersion in functional and phylogenetic trait relatedness among species with decreasing fragment size, suggesting that competitive interactions are important in the disassembly of avian communities. In Chapter 5, I modelled the impact of forest cover change on ecosystem function across the Brazilian Amazon, focusing on seed dispersal by birds. Furthermore, I tested whether ecosystem function declined linearly with decreased forest cover after accounting for differences in the underlying pools of species. I found the lowest levels of functional diversity along the southern arc of deforestation and that the dispersal of large seeds showed some resilience to declining forest cover. Taken together, my results suggest that the loss of species from communities in degraded and fragmented landscapes is strongly non-random. Insectivores and large frugivores are most sensitive to land-use change, with species located in the densest parts of trait space being most threatened by a decline in forest patch size, suggesting that species interactions regulate the collapse of avian diversity in human-modified forests. I conclude that land-use change has important implications for the provisioning of ecosystem services, including seed dispersal and the control of insect herbivores. The impact of future land-use change is likely to be mediated by the composition of the original pool of species and the amount of redundancy in the ecosystem services that they provide. I discuss the relevance of my findings to land-use management strategies and policy interventions, and in particular conclude that these should, where possible, maintain pristine forest patches above 1000 ha, improve connectivity among habitat patches, and ensure greater protection for logged and burnt forests. Future studies should focus on clarifying the link between shifts in vertebrate community structure and the functioning of forest ecosystems.

Page generated in 0.0662 seconds