11 |
Rupture et fusion d'un cristal bidimensionnelPauchard, Ludovic 28 February 1997 (has links) (PDF)
Le systeme bidimensionnel etudié dans cette thèse est un film de Langmuir, film constitué d'une unique couche de molécules amphiphiles à l'interface eau-air. Une transition du premier ordre, observée dans une monocouche d'acide NBD-stéarique révèle la coexistence entre une phase cristalline et une phase liquide. Les domaines monocristallins se présentent sous la forme de longs bâtonnets, parfaitement adaptés aux études mécaniques. Nous étudions certaines propriétés de ce cristal bidimensionnel. La première étude concerne la rupture de ce solide bidimensionnel. Un cristal maintenu fléchi dans le plan de l'eau se rompt après une durée bien déterminée. Cette durée s'est avérée être fonction de la déformation appliquée au cristal. A fortescontraintes, on second mode de rupture coexiste : un certains nombre de cristaux cassent intantanément tandis que d'autres présentent une rupture différée. La seconde étude s'intéresse à la fusion des cristaux en équilibre avec leur phase liquide. La fusion peut être provoquée par trois processus distincts : deux processus thermodynamiques (réchauffement et décompression) et un processus photochimique. Ce dernier s'est avéré dû à une réaction photochimique réversible avec l'oxygène de l'air, conduisant a l'abaissement du point de fusion du cristal. Les trois processus de fusion conduisent à des observations similaires, indiquant ainsi l'existence d'un mécanisme commun dans l'initiation de la fusion. Les observation montrent que l'intérieur du crystal fond bien avant ses bords. De plus, la fusion d'un cristal maintenu déformé a lieu le long d'une ligne ou la contrainte s'annule. Nous suggérons que le mécanisme responsable de ce phénomène est la migration de défauts, probablement des dislocations, à l'endoit du cristal non déformé.; Ces défauts jouant le rôle de centres de nucléation de la fusion. Ces résultats montrent le rôle primordial des défauts dans la fusion à deux dimension.
|
12 |
CHARACTERIZATION, CONTROL AND MODELING OF PHASE SEPARATION IN MIXED PHOSPHOLIPID-PERFLUORINATED FATTY ACID MONOLAYERS2013 May 1900 (has links)
The overall objective of this PhD thesis research is to understand and control phase separation in mixed perfluorinated fatty acid-phospholipid surfactant systems that have applications as pulmonary surfactant (PS) mixtures, with an ultimate view of controlling film composition, morphology and mechanical properties. In this context the interaction between perfluorooctadecanoic acid (C18F), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the major component of native PS extract, and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) has been explored in Langmuir monolayers and Langmuir–Blodgett (LB) films using a combination of atomic force microscopy (AFM), fluorescence microscopy (FM) and Brewster angle microscopy (BAM) measurements.
Thermodynamic and morphological studies of binary and ternary mixed films made of C18F, DPPC and DPPG indicated that both the phospholipids and C18F were miscible over a wide range of compositions. The mixed phospholipid-C18F films contained multimolecular aggregates that were highly enriched in the phospholipids. Furthermore, it was found that the magnitude of the DPPC-C18F interaction could be modulated by altering the concentration of sodium ions in the underlying subphase. Using a highly simplified lung mimic fluid (pH 7.4, 150mM NaCl), DPPC and C18F became fully immiscible. Moreover, the performance characteristics of the mixed films demonstrated the usefulness of C18F as an additive for PS formulations.
The effectiveness of a PS protein mimicking peptide was evaluated against DPPC to allow comparison with previous measurements of DPPC-C18F mixed system. The mixing thermodynamics of the peptide and DPPC in Langmuir monolayer implied a repulsive interaction between the film components. The hysteresis response of the mixed monolayer films indicated that the lipid-protein mixture improved the re-spreading of DPPC films. Moreover, molecular-level organization of the mixed films explored by both FM and BAM confirmed the formation of liquid-expanded DPPC domains in the presence of minute amount of the peptide.
In order to obtain a thorough understanding of the effect of the deposition process and surfactant tail polarities on the interfacial behavior of perfluorocarbon-hydrocarbon mixed monolayer films, both BAM and AFM measurements of arachidic acid (C20) with perfluorotetradecanoic acid (C14F) and palmitic acid (C16) with C18F mixed monolayer were performed. These measurements revealed that film morphology was minimally perturbed upon its deposition onto solid substrates. Coarse grained molecular dynamics (MD) simulations of films comprised of DPPC molecules with tails of various polarities suggested that the phase separation between the monolayer components could be controlled by varying surfactant tail polarities.
|
13 |
Impacto de peptídeos biologicamente ativos no empacotamento lipídico de membranas modelo /Miasaki, Kenneth Massaharu da Fonseca January 2020 (has links)
Orientador: João Ruggiero Neto / Resumo: Os peptídeos sintéticos L1A (IDGLKAIWKKVADLLKNT-NH2, Q = +3e) e seu análogo acetilado (acL1A, Q = +2e) utilizados neste estudo foram projetados para que tenham características estruturais semelhantes ao peptídeo Polybia-MP1 extraído do veneno da vespa Polybia paulista, em que um dos dois resíduos ácidos ocupa a segunda posição na região Nterminal, e resíduos básicos são terceiros e/ou quartos vizinhos dos resíduos ácidos. Esses peptídeos possuem significativa atividade bactericida seletiva para bactérias Gram-negativas, especialmente Escherichia coli, sem serem hemolíticos. Estudos anteriores, em sistemas modelo, demonstraram que a acetilação do N-terminal resultou no aumento da atividade lítica em vesículas aniônicas (8POPC/2POPG) em comparação com o L1A, o que sugeriu perturbação do empacotamento lipídico de modo mais eficaz para o análogo que é menos carregado. Considerando que a membrana plasmática de bactérias Gram-negativas contém majoritariamente fosfatidiletanolamina (PE) e fosfatidilglicerol (PG), o presente trabalho propôs investigar o impacto dos peptídeos L1A e acL1A em membranas modelo compostas por 3POPE/1DOPG utilizando uma variedade de técnicas experimentais. Os resultados demonstraram que ambos os peptídeos induziram segregação lipídica, sendo o análogo acetilado mais eficiente em recrutar PG e segregar PE. / Abstract: The synthetic peptides L1A (IDGLKAIWKKVADLLKNT-NH2, Q = +3e) and its acetylated analog (acL1A, Q = +2e) used in this study were designed to have some structural features similar to the peptide Polybia-MP1 extracted from the venom of the wasp Polybia paulista, in which one of the acidic residues occupies the second position on the N-terminus region and basic residues are third and/or fourth neighbors of the acidic residues. These peptides display significant bactericidal activity against Gram-negative bacteria, especially Escherichia coli, being non-hemolytic. Previous work performed in model membrane systems has shown that the N-terminal acetylation led to an increase on the lytic activity in anionic vesicles (8POPC/2POPG) compared with L1A, suggesting that the less charged peptide has higher ability to perturb the lipid-packing. Considering that the Gram-negative cell membranes contain mainly phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), the present work proposed to investigate the impact of L1A and acL1A on model membranes composed of 3POPE/1DOPG using a variety of experimental techniques. The results suggested that both peptides induced lipid segregation being the acetylated analog more efficient in recruiting PG and segregating PE. / Mestre
|
14 |
Impact de nanophytoglycogènes neutres et chargés sur les propriétés biophysiques du surfactant pulmonaireGravel Tatta, Laurianne 08 1900 (has links)
Les poumons présentent de nombreux avantages en tant que voie d’administration de médicaments. Ils possèdent une grande surface (70-100 m2) pour l’adsorption de molécules et de particules, une mince barrière épithéliale, une faible acidité ainsi qu’un système vasculaire sous-jacent abondant. L’administration par inhalation est une approche prometteuse pour le traitement du cancer des poumons et des infections microbiennes comorbides dans 33% des cas puisqu’elle permet la livraison ciblée d’agents chimiothérapeutiques. Les nanoparticules sont des vecteurs idéaux d’acheminements ciblés de médicaments avec des avantages tels qu’une stabilité élevée/une longue durée de conservation ainsi qu’une capacité de transport élevée. Les nanoparticules inhalées atteignant les alvéoles pulmonaires interagissent avec le surfactant pulmonaire. Ce mélange de lipides et de protéines tapisse l’interface eau/air des alvéoles servant ainsi de barrière. L’interaction physique et chimique des nanoparticules avec le surfactant pulmonaire déterminera leur clairance, rétention et translocation. Nous proposons l’utilisation de nanoparticules de phytoglycogène, extraites de maïs sans OGM, pour l’administration pulmonaire d’un peptide anticancéreux et antimicrobien à double action dont l’administration par voie orale ou par injection est problématique. Le nanophytoglycogène, composé de molécules de glucose, est non-biopersistant, non-toxique et est certifié GRAS (Generally Recognized as Safe) par le Food and Drug Administration pour l’ingestion. Cependant, son innocuité pour l’inhalation reste à déterminer. Avant de déterminer l’efficacité du nanophytoglycogène à des fins de nanotransporteur organique pour la délivrance par aérosol de peptides thérapeutiques, son impact sur les propriétés biophysiques et sur la structure de phase du surfactant pulmonaire doit premièrement être caractérisé.
L’objectif du projet est d’étudier les effets de nanophytoglycogène de différentes charges sur les propriétés physicochimiques de modèles du surfactant pulmonaire en utilisant les monocouches Langmuir. Plus précisément, il est question d’étudier les effets des nanoparticules sur l’activité de surface, la morphologie, la réversibilité ainsi que l’épaisseur du film du surfactant pulmonaire. L’imagerie par microscopie à angle de Brewster (BAM, Brewster Angle Microscopy),
les isothermes (pression de surface vs aire moléculaire) ainsi que l’ellipsométrie à l’interface eau-air permettent une conjecture des effets néfastes potentielles du nanophytoglycogène sur les poumons.
À l’aide de ces techniques, il a été possible d’étudier des monocouches de phospholipides et de protéines, représentant le surfactant pulmonaire. En présence de nanoparticules anioniques et quasi-neutres, les différentes monocouches ne subissaient aucune perturbation. Cependant, les résultats ont démontré que les nanoparticules cationiques se lient aux phospholipides anioniques, ce qui augmente l’épaisseur de la monocouche et ainsi le travail requis pour effectuer un cycle respiratoire. Ces travaux ont démontré l’importance de la charge des nanomatériaux lors de leur interaction avec le surfactant pulmonaire. De plus, les résultats de cette étude ont aussi permis de classer les nanophytoglycogènes quasi-neutre et anionique comme étant des vecteurs de médicaments potentiels. / The human lungs present many advantages as a drug delivery route, namely a high surface area (70-100 m2) for the adsorption of molecular species and particles, a thin epithelial barrier, an abundant underlying vasculature, and low acidity. Inhalation delivery is expected to be an ideal approach for the treatment of lung cancer and associated pulmonary infection (33% of cases) as it allows the site-specific physical delivery of chemotherapeutic. Nanoparticle carriers broaden the options for targeted drug delivery systems with advantages including high stability/long shelf life and high carrier capacity. In the alveoli, inhaled nanoparticles interact with lung (pulmonary) surfactant, a lipid/protein mixture that lines the alveolar air/fluid interface and serves as a primary barrier to uptake. The physical/chemical interaction of the nanoparticles with the surfactant determines their clearance, retention, and translocation. We propose to use novel phytoglycogen nanoparticles, extracted from non-GMO corn, for the pulmonary delivery of a dual action anticancer and antimicrobial peptide that is problematic to deliver orally or by injection. Nanophytoglycogen, composed of glucose molecules, is non-biopersistent, non-toxic and is GRAS (Generally Recognized as Safe) for oral ingestion. However, its safety for inhalation remains to be determined. Before evaluating the efficacy of nanophytoglycogen to serve as an organic nanocarrier for the aerosol delivery of peptide therapeutics, their impact on the biophysical properties and phase structure of lung surfactant must first be characterized.
The objective of the research is to investigate the effect of nanophytoglycogens of different surface charge on the physicochemical properties of pulmonary surfactant model systems using Langmuir monolayers. More specifically, the effect of the nanoparticles on the surface activity, morphology, reversibility, and film thickness of pulmonary surfactant is studied. Isotherms (surface pressure vs. molecular area), BAM (Brewster Angle Microscopy) imaging, and ellipsometry at the air-water interface allow a surmise of the potential adverse effects of nanophytoglycogen on the lungs.
Using these techniques, it was possible to study monolayers of phospholipids and proteins, representing the pulmonary surfactant. In the presence of anionic and quasi-neutral
iv
nanoparticles, the different monolayers didn’t undergo any disturbance. However, the results demonstrated that cationic nanoparticles bind to anionic phospholipids, which increases the thickness of the monolayer and thus the work required to complete a respiratory cycle. This study has demonstrated the importance of nanoparticle’s surface charge during their interaction with pulmonary surfactant. In addition, the results of this study also made it possible to classify the quasi-neutral and anionic nanophytoglycogens as being potential drug vectors.
|
15 |
Molecular Insights into the Interactions of Monovalent Cations with Highly charged Fatty Acid Monolayers / Molekylära insikter inom interaktionerna mellan monovalenta katjoner och laddade fettsyramonolagerCarlhamn Rasmussen, Ran January 2023 (has links)
Vibrational sum frequency spectroscopy har använts för att studera interaktionerna mellan monovalenta joner och laddade fettsyramonolager. Subfasen bestod av utvalda alkalihydroxidsaltlösningar med pH12, med huvudfokus på cesiumjonen. Molekylär information erhölls genom att rikta in sig på vibrationerna hos karboxylsyragruppen, alkylkedjor, och vattenmolekyler i kontakt med monolagret, samt i det diffusa dubbellagret. Ytans laddning uppskattades genom att observera sträckningsvibrationerna hos hydratiserade karboxylat och protonerade karboxylsyror. Ytans potential beräknades utifrån signalresponsen hos vattenmolekylerna i det diffusa dubbellagret. Beteendet hos ytans laddning och potential överensstämmer väl med Gouy-Chapman-teorin för stora områden per molekyl, men avviker avsevärt vid kompression av monolagret. Vid små områden per molekyl, eller hög laddningsdensitet, stämmer resultaten bättre överens med en storleksmodifierad version av Poisson-Boltzmann-teorin. Resultaten från experiment med en cesiumhydroxidsubfas jämfördes med motsvarande experiment med natrium och litium, vilket beskriver cesiumjonen i relation till de andra alkalijonerna vad gäller jonspecifika effekter. Resultaten som har samlats in här ger insikt i hur effektiv jonstorlek kan användas för att modellera och förutsäga jonspecifika effekter med karboxylsyragruppen i ett Langmuir-monolager. / Vibrational sum frequency spectroscopy has been used to study the interactions of monovalent ions with highly charged fatty acid monolayers. The subphase consisted of selected alkali hydroxide salt solutions of pH 12, primarily focusing on the cesium ion. Molecular information was obtained by targeting the vibrational modes of the carboxylic acid headgroups, alkyl chains, and water molecules in the immediate surface and diffuse double layers. The surface charge was estimated by monitoring the stretching modes of the hydrated carboxylate and protonated carboxylic acid. The surface potential was estimated from the signal response of the water molecules in the diffuse double layer. The behaviour of the surface charge and surface potential agrees well with Gouy-Chapman theory for large areas per molecule, but deviates significantly upon monolayer compression. At small areas per molecule or high surface charge density, the results better align with a size-modified version of the Poisson-Boltzmann theory. The results obtained with a cesium hydroxide subphase were compared to equivalent experiments with sodium and lithium, which puts the cesium ion into context with the other alkali ions in terms ion specific effects. The results collected here provide insight into how effective ion size can be used in modelling and predicting ion specific effects with the carboxylic acid moiety in a Langmuir monolayer.
|
16 |
Auto-organisation des Acyl Steroid Glycosides (ASG) : Etude des relations structure-propriétés pour les cas de l’α-CAG et du BbGL 1, constituants de membranes bactériennes / Self-organization behavior of Acyl Steroid Glycosides (ASG) : structure-property investigation of bacterial membrane components α-CAG and BbGL 1 and their analoguesZonglong, Yang 15 May 2018 (has links)
Les acyl stéryl glycosides (ASGs) appartiennent à une famille de glycolipides qui possèdent un caractère amphiphile particulier dû à la présence de deux parties hydrophobes, un stéroïde et une chaine grasse. Dans le cadre de nos études des propriétés d’auto-organisation des glycoamphiphiles, ce travail est dédié à l’étude de deux ASGs, α-CAG et BbGL 1, composés naturels présents respectivement dans les membranes des bactéries Helicobacter pylori et Borrelia burgdorferi., présentant des structures similaires mais des activités biologiques différentes. Notre travail a consisté à déterminer les paramètres structuraux qui gouvernent leurs propriétés d’auto-assemblage. Deux séries de 6-O-acyl cholestéryl glycosides (glucosides et galactosides) variant dans leur configuration anomérique et la longueur et le niveau d’insaturation de leur chaine grasse ont été synthétisées et leur capacité à former des cristaux liquides et à promouvoir une ségrégation lipidique dans des monocouches de Langmuir modèles de membrane ont été étudiées. Les relations structure-propriétés établies montrent que la longueur de la chaine grasse est le paramètre le plus discriminant dans le comportement d’auto-assemblage dans les deux types d’expériences. Pour les cristaux liquides thermotropes, l’autre facteur discriminant est la configuration anomérique, deux phases colonnaires successives rectangulaires puis hexagonales étant observées pour les séries α alors qu’une seule a été observée en séries β Changer de sucre n’induit pas de différence significative dans le comportement LC. Concernant la formation de domaines lipidiques, les modifications de la configuration (α/β) et du sucre influencent significativement leur temps d’apparition, apportant pour la première fois une définition claire des paramètres structuraux et physicochimiques qui gouvernent le comportement de l’α-CAG et ses analogues, en lien avec les données commues sur l’augmentation de pathogénicité d’Helicobacter pylori. Ce travail de thèse donne une illustration de l’importance de la structure des carbohydrates dans les processus biologiques et du concept de glycoamphiphilie. / Acyl steryl glycosides (ASGs) are a family of glycolipids which exhibit a peculiar amphiphilic character based on the presence of two hydrophobic appendages, one steroid moiety and one fatty alkyl chain, attached on a polar carbohydrate backbone. In the frame of our studies on the self-organisation properties of carbohydrate-based amphiphiles, this thesis is an investigation of the behavior of ASGs, in particular α-CAG and BbGL 1, two natural compounds found in bacterial membranes, Helicobacter pylori, Borrelia burgdorferi repectively, who exhibit close structures but different bioactivity. Our work has aimed at determining the key structural parameters governing their self-organization behavior. Two series of acyl cholesteryl glycosides (glucosides or galactosides) have been synthesized, with variations in the anomeric configuration, the 6-O-acyl chain length and level of unsaturation, and investigated with respect to their ability to form liquid crystalline mesophases, and to drive lipid domain segregation in Langmuir monolayers as model membranes. Structure-properties relationships have been established, indicating that the fatty chain length showed the most remarkable influence on the self-organization behavior, in LC and model membrane experiments. For the LC mesophases, the other important parameter is the anomeric configuration, two successive columnar phases, rectangular then hexagonal, being observed for the α-anomers, whereas only one was found for the β-anomers. No significant changes were observed when comparing glucosides and galactosides. With respect the formation of domains, configuration modifications at both C-1 (α or β) and C-4 (gluco or galacto) influenced significantly the domains appearance time, giving the first, clear physicochemical proof of the structural influential factors in the behavior of α-CAG and analogues, in the context of the known increased pathogenicity of Helicobacter pylori. Overall, this thesis provides a nice illustration of the subtlety and the importance of carbohydrate structure in biological processes, and of the concept of glycoamphiphilicity.
|
Page generated in 0.0479 seconds