Spelling suggestions: "subject:"laplace regularization""
1 |
Learning to Rank with Contextual InformationHan, Peng 15 November 2021 (has links)
Learning to rank is utilized in many scenarios, such as disease-gene association, information retrieval and recommender system. Improving the prediction accuracy of the ranking model is the main target of existing works. Contextual information has a significant influence in the ranking problem, and has been proved effective to increase the prediction performance of ranking models. Then we construct similarities for different types of entities that could utilize contextual information uniformly in an extensible way.
Once we have the similarities constructed by contextual information, how to uti- lize them for different types of ranking models will be the task we should tackle. In this thesis, we propose four algorithms for learning to rank with contextual informa- tion. To refine the framework of matrix factorization, we propose an area under the ROC curve (AUC) loss to conquer the sparsity problem. Clustering and sampling methods are used to utilize the contextual information in the global perspective, and an objective function with the optimal solution is proposed to exploit the contex- tual information in the local perspective. Then, for the deep learning framework, we apply the graph convolutional network (GCN) on the ranking problem with the combination of matrix factorization. Contextual information is utilized to generate the input embeddings and graph kernels for the GCN. The third method in this thesis is proposed to directly exploit the contextual information for ranking. Laplacian loss is utilized to solve the ranking problem, which could optimize the ranking matrix directly. With this loss, entities with similar contextual information will have similar ranking results. Finally, we propose a two-step method to solve the ranking problem of the sequential data. The first step in this two-step method is to generate the em- beddings for all entities with a new sampling strategy. Graph neural network (GNN) and long short-term memory (LSTM) are combined to generate the representation of sequential data. Once we have the representation of the sequential data, we could solve the ranking problem of them with pair-wise loss and sampling strategy.
|
2 |
Modeling the variability of EEG/MEG data through statistical machine learningZaremba, Wojciech 06 September 2012 (has links) (PDF)
Brain neural activity generates electrical discharges, which manifest as electrical and magnetic potentials around the scalp. Those potentials can be registered with magnetoencephalography (MEG) and electroencephalography (EEG) devices. Data acquired by M/EEG is extremely difficult to work with due to the inherent complexity of underlying brain processes and low signal-to-noise ratio (SNR). Machine learning techniques have to be employed in order to reveal the underlying structure of the signal and to understand the brain state. This thesis explores a diverse range of machine learning techniques which model the structure of M/EEG data in order to decode the mental state. It focuses on measuring a subject's variability and on modeling intrasubject variability. We propose to measure subject variability with a spectral clustering setup. Further, we extend this approach to a unified classification framework based on Laplacian regularized support vector machine (SVM). We solve the issue of intrasubject variability by employing a model with latent variables (based on a latent SVM). Latent variables describe transformations that map samples into a comparable state. We focus mainly on intrasubject experiments to model temporal misalignment.
|
3 |
Contributions au démélange non-supervisé et non-linéaire de données hyperspectrales / Contributions to unsupervised and nonlinear unmixing of hyperspectral dataAmmanouil, Rita 13 October 2016 (has links)
Le démélange spectral est l’un des problèmes centraux pour l’exploitation des images hyperspectrales. En raison de la faible résolution spatiale des imageurs hyperspectraux en télédetection, la surface représentée par un pixel peut contenir plusieurs matériaux. Dans ce contexte, le démélange consiste à estimer les spectres purs (les end members) ainsi que leurs fractions (les abondances) pour chaque pixel de l’image. Le but de cette thèse estde proposer de nouveaux algorithmes de démélange qui visent à améliorer l’estimation des spectres purs et des abondances. En particulier, les algorithmes de démélange proposés s’inscrivent dans le cadre du démélange non-supervisé et non-linéaire. Dans un premier temps, on propose un algorithme de démelange non-supervisé dans lequel une régularisation favorisant la parcimonie des groupes est utilisée pour identifier les spectres purs parmi les observations. Une extension de ce premier algorithme permet de prendre en compte la présence du bruit parmi les observations choisies comme étant les plus pures. Dans un second temps, les connaissances a priori des ressemblances entre les spectres à l’échelle localeet non-locale ainsi que leurs positions dans l’image sont exploitées pour construire un graphe adapté à l’image. Ce graphe est ensuite incorporé dans le problème de démélange non supervisé par le biais d’une régularisation basée sur le Laplacian du graphe. Enfin, deux algorithmes de démélange non-linéaires sont proposés dans le cas supervisé. Les modèles de mélanges non-linéaires correspondants incorporent des fonctions à valeurs vectorielles appartenant à un espace de Hilbert à noyaux reproduisants. L’intérêt de ces fonctions par rapport aux fonctions à valeurs scalaires est qu’elles permettent d’incorporer un a priori sur la ressemblance entre les différentes fonctions. En particulier, un a priori spectral, dans un premier temps, et un a priori spatial, dans un second temps, sont incorporés pour améliorer la caractérisation du mélange non-linéaire. La validation expérimentale des modèles et des algorithmes proposés sur des données synthétiques et réelles montre une amélioration des performances par rapport aux méthodes de l’état de l’art. Cette amélioration se traduit par une meilleure erreur de reconstruction des données / Spectral unmixing has been an active field of research since the earliest days of hyperspectralremote sensing. It is concerned with the case where various materials are found inthe spatial extent of a pixel, resulting in a spectrum that is a mixture of the signatures ofthose materials. Unmixing then reduces to estimating the pure spectral signatures and theircorresponding proportions in every pixel. In the hyperspectral unmixing jargon, the puresignatures are known as the endmembers and their proportions as the abundances. Thisthesis focuses on spectral unmixing of remotely sensed hyperspectral data. In particular,it is aimed at improving the accuracy of the extraction of compositional information fromhyperspectral data. This is done through the development of new unmixing techniques intwo main contexts, namely in the unsupervised and nonlinear case. In particular, we proposea new technique for blind unmixing, we incorporate spatial information in (linear and nonlinear)unmixing, and we finally propose a new nonlinear mixing model. More precisely, first,an unsupervised unmixing approach based on collaborative sparse regularization is proposedwhere the library of endmembers candidates is built from the observations themselves. Thisapproach is then extended in order to take into account the presence of noise among theendmembers candidates. Second, within the unsupervised unmixing framework, two graphbasedregularizations are used in order to incorporate prior local and nonlocal contextualinformation. Next, within a supervised nonlinear unmixing framework, a new nonlinearmixing model based on vector-valued functions in reproducing kernel Hilbert space (RKHS)is proposed. The aforementioned model allows to consider different nonlinear functions atdifferent bands, regularize the discrepancies between these functions, and account for neighboringnonlinear contributions. Finally, the vector-valued kernel framework is used in orderto promote spatial smoothness of the nonlinear part in a kernel-based nonlinear mixingmodel. Simulations on synthetic and real data show the effectiveness of all the proposedtechniques
|
Page generated in 0.1303 seconds