251 |
APLIKACE NANOMATERIÁLŮ PRO VÝVOJ PÁJEK BEZ OLOVA / THE APPLICATION OF NANOMATERIALS FOR LEAD FREE SOLDERS DEVELOPMENTPešina, Zbyněk January 2012 (has links)
The present dissertation is motivated by the search for alternatives of lead-free soldering by nanoparticles of metals and their alloys. The research focuses on the possibility of replacing lead-free solders by nanoparticles. This issue is currently being addressed by the use of lead-free solders but their properties are not entirely equivalent to properties of lead-tin based alloys. The theoretical part of the dissertation first summarizes up-to date knowledge on the development of lead-free alloys currently used for soldering in the electronics. The work compares these lead-free solder candidates with previously used Pb-Sn alloys. The second section of the theoretical part is devoted to nanotechnology that offers possible solutions of problems associated with the use of lead-free solders. The text contains a description of the properties of nanocrystalline materials in comparison with those of compact alloys having the same chemical composition. The possibility of preparation of nanoparticles and potential problems associated with small particle sizes are also presented. Introduction of the experimental part focuses on the preparation of nanoparticles of pure metals and alloys by chemical and physical ways as well as on an instrumentation for characterisation and analysis. Attention is focused on the silver in nanoparticle form that exhibits the low temperature sintering effect, which is thermally activated by decomposition of oxide envelope covering the Ag nanoparticles. This factor is critical for low-temperature sintering and thus also for possible future applications. The thermal effects of the low sintering process were studied by methods of thermal analysis. The preparation of the Cu / Ag nano / Cu joints was carried out in-situ in inert atmosphere and under the action of atmospheric oxygen. In both cases varying conditions of thermal treatment were used. The cross sections of the prepared joints were then used for the metallographic analysis of the local mechanical properties of the resulting silver layer, for the chemical composition evaluation of the resulting layers of the joint, and for the microstructure study. Strength characteristics are represented by testing shear strength of individual joints.
|
252 |
Mechanisms of microtubule nucleation in metaphase spindles and how they set spindle sizeDecker, Franziska 25 September 2018 (has links)
Regulation of size and growth is a fundamental problem in biology and often closely related to functionality and fitness. A prominent example is the mitotic spindle, whose size needs to be perfectly tuned to ensure proper chromosome segregation during cell division. It is known that spindle size generally scales with cell volume, most likely as a result of limiting components. However, this relation breaks down in very large cells where spindles have a maximum size. How the size and microtubule mass are set and why spindles show an upper size limit in large cells is still not understood.
Spindles mainly consist of highly dynamic short microtubules that turn over very quickly in comparison to the lifetime of the entire structure. Thus, microtubules need to be constantly created throughout the spindle, a process called nucleation. Understanding the role of microtubule nucleation in setting the size of spindles is limited by the fact that little is known about the rate, distribution, and regulation of microtubule nucleation in these structures. This is partly due to the lack of methods to measure microtubule nucleation in spindles.
During this work, I developed an assay based on laser ablation to probe microtubule nucleation in monopolar spindles assembled in Xenopus laevis egg extract. Using this new method in combination with quantitative microscopy, I found that microtubule nucleation in these structures is spatially regulated. Furthermore, I observed that nucleation is stimulated by pre-existing microtubules leading to new microtubule growth in their physical proximity.
Combining my experimental results on nucleation with theory and further biochemical perturbations, I show that this autocatalytic nucleation mechanism is limited by the availability of active nucleators. In spindles, the amount of active nucleators decreases with distance from the chromosomes. Thus, this mechanism provides an upper limit to spindle size even when resources are not limiting.
|
253 |
UV laser patterning of silicone-based soft electrode gridsJakobsson, Maria January 2023 (has links)
Roughly 123 million people worldwide are affected by conditions such as epilepsy, dementia, and cardiovascular diseases. Wearable electrodes are currently used to monitor these conditions short-term. Long-term monitoring would allow for predicting seizures and could be used as a preventive treatment. As opposed to the currently used electrodes, wearables that are intended for long-term use must be soft and flexible in order not to cause harm or discomfort for the user. The electrodes should also have high resolution, meaning that the electrode paths should be as narrow as possible without negatively affecting the performance of the electrode. In this thesis, soft and flexible electrode grids based on silicones are developed using UV laser patterning. Two different methods are evaluated: laser curing of silicones with the addition of a photoinitiator, and laser ablation of conductive composite. The results found in this thesis are that photocuring silicones gives a too low resolution to be useful for patterning soft electrode grids. UV laser ablation on the other hand showed high resolution while the electrodes retained stretchability. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
|
254 |
Vývoj zařízení a metodiky pro spektrometrii laserem buzeného mikroplazmatu (LIBS) / Development of a device and methodology for Laser-Induced Breakdown Spectroscopy (LIBS)Képeš, Erik January 2021 (has links)
Táto práca sa zaoberá prenosom analytických modelov medzi rôznymi systémami spektroskopie laserom indukovanej plazmy (LIBS) a porovnaním LIBS výsledkov získaných na rôznych systémoch. Instrumentácia LIBS aj spracovanie LIBS spektier sú vysoko flexibilné. Bohužiaľ, kvôli týmto flexibilitám sú výsledky získané na jednom LIBS systéme zriedka priamo porovnateľné s výsledkami získanými na inom systéme. Toto je ďalej komplikované rôznymi, často neznámymi, účinkami algoritmov spracovania LIBS spektier. V dôsledku toho sú modely analýzy spravidla špecifické pre systém (a parametre). Prenos analytických modelov medzi rôznými systémami by viedol k významnému zlepšeniu analytických schopností metódy LIBS a k miernemu zníženiu nákladov v priemyselných aplikáciách LIBS. Práca skúma vplyv rôznych stratégií merania metódou LIBS. Naďalej, práca skúma transformáciu získaných LIBS spektier prostredníctvom spracovávania údajov. Práca sa napokon zaoberá prenosom analytických modelov medzi rôznymi LIBS systémami.
|
255 |
[pt] ABLAÇÃO POR LASER PULSADO DE ALVOS DE FERRO E NÍQUEL EM ÁGUA E SUAS IMPLICAÇÕES EM ASTROQUÍMICA / [en] PULSED LASER ABLATION OF IRON AND NICKEL TARGETS IN WATER AND ITS IMPLICATIONS IN ASTROCHEMISTRYJOAO GABRIEL GIESBRECHT F PAIVA 02 December 2021 (has links)
[pt] A pesquisa aponta para a possibilidade de realizar a reação de
redução de CO2 (CO2RR) para a formação de nanomateriais de carbono
por ablação a laser pulsado(PLA) de alvos magnéticos de Ferro(Fe) e
Níquel(Ni) em água pura deionizada. Os materiais coloidais sintetizados
foram caracterizados por diferentes técnicas de espectroscopias ópticas (UVVis,
ICP-MS, FTIR e Raman) e microscopia eletrônica de transmissão
(TEM), revelando a presença de nanopartículas de óxidos e hidróxidos de
metais de transição, junto com nanomaterial orgânico. Esse último, é bem
visível por TEM, espectroscopia de raio-X por dispersão em energia (EDS),
espectroscopia por perda de energia de elétrons (EELS), e espectroscopia
Raman, que indica a presença de carbono amorfo grafítico e vibrações CH.
No caso do nanomaterial obtido do Níquel, os resultados FTIR confirmam a
presença da fase do hidróxido beta-Ni(OH)2, enquanto as medidas Raman
e TEM sugerem também a presença de nano-folhas de Ni(HCO3)2. Os
resultados experimentais foram enfim discutidos no contexto da origem e
da evolução de moléculas simples e complexas de interesse astroquímico,
com foco especial nas espécies potencialmente formadas na superfície de
pequenos corpos metálicos do Sistema Solar e grãos de poeira cósmica do
meio interestelar. / [en] The proposed research points to the possibility to perform CO2
reduction reaction (CO2RR) to solid carbon nanomaterials by the pulsed
laser ablation (PLA) of magnetic target of iron (Fe) and nickel (Ni) in pure
deionized water. The synthesized colloidal dispersions were characterized
by different optical spectroscopies (UV-Vis, ICP-MS, FTIR and Raman)
and transmission electron microscopy (TEM), revealing the presence of
nanosized transition metal oxide and hydroxide nanoparticles, together with
organic nanomaterial. The latter is well visible by TEM, energy-dispersive
X-Ray spectroscopy (EDS), electron energy-loss spectroscopy(EELS), and
Raman spectroscopy, which indicates the presence of amorphous graphitic
carbon and CH vibrations. In the case of Ni derived nanomaterial, FTIR
results confirm the presence of a beta-Ni(OH)2 hydroxide phase, while
Raman and TEM measurements suggest also the presence of Ni(HCO3)2
nanosheets. The experimental results were finally discussed in the frame of
the origin and evolution of simple and complex molecules of astrochemical
interest, with special focus on those species potentially formed on the surface
of metallic minor bodies in the solar system and cosmic dust grains in the
interstellar medium(ISM).
|
256 |
Lasermikrostrukturierung von hochlegiertem Stahl – Grundlagenuntersuchungen zum Einsatz hochfrequenter Pulsfolgen ultrakurzer LaserpulseMetzner, Daniel 19 January 2024 (has links)
Die vorliegende Arbeit befasst sich mit dem Einsatz hochfrequenter Pulsfolgen ultrakurzer Laserpulse zur Lasermikrobearbeitung von hochlegierten Stählen. Dabei wird der Einfluss verschiedener Laserparameter auf die Abtragseffizienz, die erzeugten Oberflächenstrukturen sowie auf physikalische Prozesse während der Lasermikrobearbeitung untersucht. Zu diesem Zweck wurde X90CrV18-Stahl mit ultrakurzen Laserpulsen und extrem hohen Pulswiederholfrequenzen innerhalb einer Pulsfolge von bis zu 2,5 GHz bestrahlt. Die Abtragsvolumina und Strukturdurchmesser pro Laserpuls, die emittierte Sekundärstrahlung innerhalb einer Pulsfolge sowie die resultierende Topographie nach der Bestrahlung wurden empirisch untersucht. Um ein grundlegendes Verständnis der bei der Bestrahlung in der Wechselwirkungszone wirkenden physikalischen Mechanismen zu erlangen, wurden Simulationen der Wechselwirkung von einzelnen ultrakurzen Laserpulsen sowie von Pulsfolgen ultrakurzer Laserpulse mit hochlegiertem Stahl durchgeführt. Erkenntnisse über funktionale Zusammenhänge zwischen den Laserparametern ultrakurzer Laserpulse und der resultierenden Abtragstiefe sowie der Schmelzfilmbildung wurden aus Ergebnissen umfangreicher Simulationen abgeleitet. Darüber hinaus erlauben die Ergebnisse des pro Laserpuls abgetragenen Volumens Rückschlüsse auf Abschirmprozesse innerhalb einer Pulsfolge durch eine vorhandene Ablationswolke bzw. durch ein Plasma. Eine iterative Abschirmung der Laserstrahlung nachfolgender Laserpulse durch die Wechselwirkung mit einer vorhandenen Ablationswolke tritt vor allem bei der Verwendung von Pulsfolgen mit Pulswiederholfrequenzen im MHz-Bereich auf. Ausgehend vom Ablationsvolumen pro Laserpuls bei Pulswiederholfrequenzen im GHz-Bereich wird die Laserstrahlung nachfolgender Laserpulse einer Pulsfolge nahezu vollständig vom Plasma abgeschirmt. Basierend auf den neuen Erkenntnissen dieser Arbeit wurden optimale Prozessparameter für die Erzeugung von 3D-Mikrostrukturen ermittelt, um eine möglichst hohe Effizienz bzw. Produktivität bei gleichzeitig geringer Oberflächenrauheit zu erreichen.
|
257 |
Towards laser fabrication of soft neural electrodesSchill, John January 2022 (has links)
Electronic devices define our everyday lives. They are often large, rigid, and brittle. Modern medical science has come so far as to start using miniature electronic devices to monitor many types of diseases. Especially, neurological disorders pose obstacles hard to overcome when treating them but it also motivates finding methods that allow for continuous monitoring. Implementing a small electronic device inside the human body adds requirements on the device to be stretchable, biocompatible, and more. Not only is the device limited by these factors, but also, current fabrication methods are not efficient for creating nanoscale versions for these types of devices. patterninglaser ablation is a growing field for cutting out and pattern nano-materialistic devices with high precision and good repeatability. This project is focused on using a laser engraving tool from metaquip on different substrates. This project is focused on the development of methods for laser fabrication of soft neural electrodes. The requiered steps are the alignment of samples to assure good precision when engraving it with the laser engraving tool, that also will be called laserpatterner, finding good parameters for cutting out devices and pattern conductors for said devices. On top of that, a linear force stretching will be used to characterize samples that were cut, in the form of strips, using the laserpatterner. The stretching behavior of strips consisting of the elastomer polydimethylsiloxane, which in turn will be the insulator for silver nanowires, is examined in the stretching setup. Parameter optimization is relevant in all experiments done in this project and lay the foundations for cutting and patterning silver nanowires devices. All factors included will eventually lead to a good method for fabricating soft neural electrode devices and this project is stepping stone towards that goal. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
|
258 |
A new process chain for producing bulk metallic glass replication masters with micro- and nano-scale featuresVella, P.C., Dimov, S.S., Brousseau, E., Whiteside, Benjamin R. 05 September 2014 (has links)
Yes / A novel process chain for serial production of polymer-based devices incorporating both micro- and nano-scale features is proposed. The process chain is enabled by the use of Zr-based bulk metallic glasses (BMG) to achieve the necessary level of compatibility and complementarity between its component technologies. It integrates two different technologies, namely laser ablation and focused ion beam (FIB) milling for micro-structuring and sub-micron patterning, respectively, thus to fabricate inserts incorporating different length scale functional features. Two alternative laser sources, namely nano-second (NS) and pico-second (PS) lasers, were considered as potential candidates for the first step in this master-making process chain. The capabilities of the component technologies together with some issues associated with their integration were studied. To validate the replication performance of the produced masters, a Zr-based BMG insert was used to produce a small batch of micro-fluidic devices by micro-injection moulding. Furthermore, an experimental study was also carried out to determine whether it would be possible by NS laser ablation to structure the Zr-based BMG workpieces with a high surface integrity whilst retaining the BMG's non-crystalline morphology. Collectively, it was demonstrated that the proposed process chain could be a viable fabrication route for mass production of polymer devices incorporating different length scale features.
|
259 |
Laser-synthesis and optical functionalization of NV-fluorescent nanodiamonds for quantum sensing applicationsBasso, Luca 24 January 2020 (has links)
The absence of a cheap and easily scalable synthesis technique for nitrogen-vacancy (NV) centers enriched nanodiamonds (NDs) is a critical factor for the development of devices based on this very peculiar nanoparticle. Indeed, the combination between the unique NV fluorescence properties and NDs characteristics allow to obtain a tool having quantum sensing capabilities, with nanometric spatial resolution, which is able to operate in a wide range of temperature, pressures and in harsh chemical conditions. NVenriched NDs applications in nanothermometry, nanomagnetometry and in bio-imaging have already been reported. However, most of the standard fluorescent NDs production techniques present common drawbacks: poor control in NDs size distribution and in nitrogen concentration, as well as the need of post-synthesis process to clean the NDs surface from impurities and to increase the NV density. In this thesis, an alternative method for fluorescent NDs synthesis based on pulsed laser ablation (PLA) of graphite is demonstrated. After the introductory chapters on NV-centers physics and NDs properties (Chapter 2 and 3), the demonstration that PLA is a viable route for synthesis of NDs is given in Chapter 4. In particular, PLA of graphite and of diamond-like carbon is performed in water. Here, a thermodynamic model taking into account the peculiar physical processes occurring during PLA is developed to explain NDs formation. Then, synthesis of NV-enriched NDs is demonstrated through PLA of graphite in a nitrogen atmosphere (Chapter 5) and in liquid nitrogen (Chapter 6). In both chapters, the thermodynamic model is adapted to explain diamond phase formation in a gaseous environment and in a cryogenic liquid. Furthermore, NV centers optical properties are fully characterized with optically detected magnetic resonance (ODMR) spectroscopy. Finally, in Chapter 7, fluorescent NDs are produced by laser ablation of N-doped graphite in water. This particular target is then used for a quantitative comparison between the other fluorescent NDs laser-synthesis, with the aim of establishing in which condition the highest NV-center formation efficiency is achieved.
|
260 |
Structural, Optical And Electrical Studies On Aurivillius Oxide Thin FilmsKumari, Neelam 07 1900 (has links)
The present research work mainly focuses on the fabrication and characterization of single and multilayer thin films based on Bismuth Vanadate (BVO) and Bismuth Titanate (BTO). The multi-target laser ablation technique was used to fabricate single layer thin films of BVO, BVN and BTO; and multilayers composed of BVO and BTO in different structures. The fabricated thin films exhibited dense microstructure and a sharp interface with the substrate. The lattice strain, surface roughness and grain size could be varied as functions of composition and individual layer thickness in different structure fabricated. The optical properties were studied by spectroscopic ellipsometry and optical transmission spectra. The various models that were used for ellipsometric data analysis gave an excellent fitting to the experimental data. The optical constants were determined through multilayer analyses of the films. The band gap of these films was studied by spectroscopic ellipsometry and optical transmission. The optical studies carried out on BVO-BTO bilayer indicated the presence of an interfacial layer in between the BVO and BTO layer, whose refractive index was different from that of the individual layers and is attributed to different nature of the interfacial layer. The ferroelectric nature of BVO films was confirmed by P-E hysteresis loop studies under different applied fields and at various probing frequencies. The same was corroborated via the C-V measurements of these BVO films which exhibited butterfly shaped C-V characteristics. Fatigue studies in these films indicated that the switchable polarization is essentially constant through 105 cycles, after which it starts increasing probably due to the ionic conduction in BVO thin films. The dielectric response of undoped and Nb doped BVO as well as BVBT ML thin films were studied over a wide range of temperatures. The BVO films exhibited remarkable dielectric dispersion at low frequencies especially in the high temperature regime. Further, the frequency and temperature dependence of the dielectric, impedance, modulus and conductivity spectra of these films were investigated in detail. The ac conductivity was found to obey well the double power law in case of ML, indicating the different contributions to the conductivity, the low frequency conductivity being due to the short range translational hopping and the high frequency conductivity is due to the localized or reorientational hopping motion. DC leakage conduction in BVO, BVN and BVBT ML thin films was studied over a wide range of temperatures and applied electric fields. The experimental data were analyzed in light of different models to investigate the dc conduction mechanism in these films which were broadly classified into electrode limited and bulk limited conduction processes. In the case of BVO thin films the dc leakage current exhibited an ohmic nature at low electric fields followed by an onset of the space charge limited conduction (>1). Further in case of BVN films, three distinct regions were observed in I-V characteristics signifying different types of conduction processes in these films. In case of BVBT ML thin films, bulk limited PF mechanism was found to determine the conduction behavior at moderate electric fields. At higher electric fields, a trap filled region was observed which was followed by SCL conduction at higher fields. Therefore the present observation indicates the presence of more than one bulk limited conduction process in BVBT ML thin films. BVO thin films exhibiting good structure and dense morphology were successfully prepared on p-type Si by chemical solution decomposition technique. The C-V characteristics were evaluated for Au/BVO/Si MFS structure which showed a typical high frequency feature of a conventional MFIS structure.
|
Page generated in 0.1144 seconds