1 |
Contrôle et optimisation du test d'adhérence par choc laser sur assemblages collés / Control and optimization of laser shock adhesion test on bonded assembliesBardy, Simon 18 December 2017 (has links)
La généralisation du procédé d’assemblage par collage au sein des structures aérospatiales, aéronautiques et automobiles est confrontée au besoin d’évaluation non destructive quantitative des assemblages. Le procédé de test d’adhérence par choc laser (LASAT) répond à cette problématique par la sollicitation calibrée des joints collés et l’utilisation de diagnostics non-destructifs pour déterminer l’état résiduel des joints suite à cette sollicitation qui doit décoller les joints faibles et préserver l’intégrité structurelle des assemblages corrects. La détermination des paramètres laser optimaux pour mettre en œuvre ce test d’épreuve non-destructif (ND-LASAT) est réalisée par l’application d’une méthodologie bien définie. Cette dernière implique la caractérisation par une approche expérimentale et numérique de l’assemblage considéré, suivie d’une phase d’optimisation. La diversification des configurations d’interaction-laser matière impliquées dans ces configurations optimisées nécessite de disposer d’outils numériques pour prédire les chargements appliqués aux joints collés. Dans cette étude, le développement et la validation de modèles intégrés dans un code multi-physique répond à ce besoin. Un effort particulier a été porté sur l’évaluation de la précision des chargements simulés. Enfin, la démonstration du procédé ND-LASAT sur trois différents assemblages collés a été réalisée, validant ainsi la méthodologie et la chaine numérique développées dans cette étude. / Bonding process generalization within aerospace, aeronautical and automotive structures faces the need of quantitative non-destructive evaluation of assemblies. Laser shock adhesion test (LASAT) meets this requirement by applying a calibrated stress to bonded joints and using non-destructive diagnostics to determine the post-shock state of the joint. The calibrated stress must disbond weak joints and keep correct assemblies intact. Optimal laser parameters determination aims at implementing this non-destructive proof test (ND-LASAT). It is achieved through application of a well-defined methodology, which implies the concerned assembly characterization by an experimental and numerical approach, followed by an optimization step. Optimization implies diversification of laser-matter configurations. Use of numerical tools for predicting loadings applied to bonded joints is then required. Models development within a multi-physics code is proposed and validated here to respond to this need. A significant effort has been made for evaluating models’ precision. Experimental demonstration of ND-LASAT process is achieved on three different bonded assemblies, and thus validating both methodology and numerical chain developed in this study.
|
2 |
Effets radiatifs et quantiques dans l'interaction laser-matière ultra-relativiste / Radiative and quantum electrodynamic effects in ultra-relativistic laser-matter interactionMartinez, Bertrand 18 December 2018 (has links)
L'avènement d'une nouvelle génération de lasers ultra-relativistes (d'éclairement supérieur à 10^22 W/cm2), tels le laser APOLLON sur le plateau de Saclay, donnera lieu à un régime d'interaction laser-matière sans précédent, couplant physique des plasmas relativistes et effets électrodynamiques quantiques. Sources de particules et de rayonnements aux propriétés énergétiques et spatio-temporelles inédites, ces lasers serviront, entre autres applications, à la mise au point de nouveaux concepts d'accélérateurs et de diagnostics radiographiques, au chauffage de plasmas denses, comme à la reproduction de configurations astrophysiques en laboratoire. En prévision des futures expériences, les codes particle-in-cell (PIC), qui constituent les outils de référence pour la simulation de l'interaction laser-plasma, doivent être enrichis des processus radiatifs et quantiques propres à ce nouveau régime d'interaction. C'est le cas du code CALDER développé au CEA/DAM, qui modélise désormais l'émission de photons énergétiques et la conversion de ceux-ci en paires électron-positron ; autant d'effets susceptibles d'affecter le bilan d'énergie de l'interaction laser-cible et, plus précisément, le rendement du laser en particules et rayonnements énergétiques. L'objet de ce stage théorique est d'étudier, à l'aide du code CALDER, l'influence de ces processus dans un certain nombre de scénarios physiques en champ extrême (accélération électronique et ionique dans un plasma surcritique, production de rayonnement, génération de choc non-collisionnel…). / Forthcoming multi-petawatt laser systems, such as the French Apollon and European Extreme Light Infrastructure facilities, are expected to deliver on-target laser intensities exceeding 10^22 W/cm^2. A novel regime of laser-matter interaction will ensue, where ultra-relativistic plasma effects are coupled with copious generation of high-energy photons and electron-positron pairs. This will pave the way for many transdisciplinary applications in fundamental and applied research, including the development of unprecedentedly intense, compact particle and radiation sources, the experimental investigation of relativistic astrophysical scenarios and tests of quantum electrodynamics theory.In recent years, most theoretical studies performed in this research field have focused on the impact of synchrotron photon emission and Breit-Wheeler pair generation, both directly induced by the laser field and believed to be dominant at intensities >10^22 W/cm^2. At the lower intensities (≲10^21 Wcm^(-2)) currently attainable, by contrast, photon and pair production mainly originate from, respectively, Bremsstrahlung and Bethe-Heitler/Trident processes, all triggered by atomic Coulomb fields. The conditions for a transition between these two regimes have, as yet, hardly been investigated, particularly by means of integrated kinetic numerical simulations. The purpose of this PhD is precisely to study the aforementioned processes under various physical scenarios involving extreme laser-plasma interactions. This work is carried out using the particle-in-cell CALDER code developed at CEA/DAM which, over the past few years, had been enriched with modules describing the synchrotron and Breit-Wheeler processes.Our first study aimed at extending the simulation capabilities of CALDER to the whole range of photon and positron generation mechanisms arising during relativistic laser-plasma interactions. To this purpose, we have implemented modules for the Coulomb-field-mediated Bremsstrahlung, Bethe-Heitler and Trident processes. Refined Bremsstrahlung and Bethe-Heitler cross sections have been obtained which account for electronic shielding effects in arbitrarily ionized plasmas. Following validation tests of the Monte Carlo numerical method, we have examined the competition between Bremsstrahlung/Bethe-Heitler and Trident pair generations by relativistic electrons propagating through micrometer copper foils. Our self-consistent simulations qualitatively agree with a 0-D theoretical model, yet they show that the deceleration of the fast electrons due to target expansion significantly impacts pair production.We then address the competition between Bremsstrahlung and synchrotron emission from copper foils irradiated at 10^22 Wcm^(-2). We show that the maximum radiation yield (into >10 keV photons) is achieved through synchrotron emission in relativistically transparent targets of a few 10 nm thick. The efficiency of Bremsstrahlung increases with the target thickness, and takes over synchrotron for >2μm thicknesses. The spectral properties of the two radiation processes are analyzed in detail and correlated with the ultrafast target dynamics.Finally, we investigate the potential of nanowire-array targets to enhance the synchrotron yield of a 10^22 Wcm^(-2) femtosecond laser pulse. Several radiation mechanisms are identified depending on the target parameters and as a function of time. A simulation scan allows us to identify the optimal target geometry in terms of nanowire width and interspacing, yielding a ∼10% radiation efficiency. In this configuration, the laser-driven nanowire array rapidly expands to form a quasi-uniform, relativistically transparent plasma. Furthermore, we demonstrate that uniform sub-solid targets can achieve synchrotron yields as high as in nanowire arrays, but that the latter enable a strong emission level to be sustained over a broader range of average plasma density.
|
3 |
Metal Colorization Using Picosecond Laser PulsesGuay, Jean-Michel 12 March 2019 (has links)
In the last few decades, the nanoscale fabrication of metallic structures has demonstrated promising applications in security (e.g. cryptography), photochemistry (e.g. plasmonassisted photo-chemistry), decoration (e.g. colouring), biocompatibility of implants and more. To fabricate such subwavelength nanostructures, we typically resort to the use of several nanolithography techniques that are lengthy and incompatible with large-scale production on complex substrates. For this purpose, we invented an innovative technique for the fast fabrication of nanostructures via the use of a picosecond laser. We used this technique to produce colourful coins for the Royal Canadian Mint which were presented at the World Money Fair in Germany in 2015 as a world rst. To ensure the long-term survival of these plasmonic colours, a new dual-layer passivation technique was conceived based on a atomic deposition process, to meet the commercialisation requirements of our industrial partner. A new burst colouring technology was also invented that allows for the creation of more visually appealing colours. These laser burst colours were also shown to have a high sensing potential and an overall better visual response to the application of the passivation layer.
|
4 |
The Multiconfiguration Time Dependent Hartree-Fock Method for Cylindrical SystemsNakib, Protik H. 05 November 2013 (has links)
Many-body quantum dynamics is a challenging problem that has induced the development of many different computational techniques. One powerful technique is the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method. This method allows proper consideration of electronic correlation with much less computational overhead compared to other similar methods. In this work, we present our implementation of the MCTDHF method on a non-uniform cylindrical grid. With the one-body limit of our code, we studied the controversial topic of tunneling delay, and showed that our results agree with one recent experiment while
disagreeing with another. Using the fully correlated version of the code, we demonstrated the ability of MCTDHF to address correlation by calculating the ground state ionization energies of a few strongly correlated systems.
|
5 |
The Multiconfiguration Time Dependent Hartree-Fock Method for Cylindrical SystemsNakib, Protik H. January 2013 (has links)
Many-body quantum dynamics is a challenging problem that has induced the development of many different computational techniques. One powerful technique is the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method. This method allows proper consideration of electronic correlation with much less computational overhead compared to other similar methods. In this work, we present our implementation of the MCTDHF method on a non-uniform cylindrical grid. With the one-body limit of our code, we studied the controversial topic of tunneling delay, and showed that our results agree with one recent experiment while
disagreeing with another. Using the fully correlated version of the code, we demonstrated the ability of MCTDHF to address correlation by calculating the ground state ionization energies of a few strongly correlated systems.
|
6 |
Contrôle de rayonnements térahertz intenses produits par lasers femtosecondes et applications à la détection de molécules / Control of intense terahertz radiations produced by femtosecond lasers and applications to the detection of moleculesNguyen, Alisée 28 January 2019 (has links)
Les ondes térahertz (THz), situées entre l'infrarouge et les micro-ondes dans le spectre électromagnétique, correspondent aux fréquences caractéristiques de nombreux mouvements moléculaires et permettent ainsi de caractériser des molécules complexes par spectroscopie dans le domaine temporel. Cette thèse a pour objectif d'étudier les champs THz émis par une source constituée d'une impulsion laser à deux couleurs générant un plasma par ionisation de l'air. En raison de l'asymétrie temporelle du champ laser, un courant électronique présentant une composante basse-fréquence dans la gamme THz est formé dans le plasma par conversion non linéaire et produit un champ secondaire comprenant une composante THz. Les effets non linéaires intervenant dans la génération du rayonnement THz sont l'effet Kerr à basse intensité (< 10¹³ W/cm²) et les photocourants à plus haute intensité (> 10¹³ W/cm²), au-dessus du seuil d'ionisation. Ce dernier mécanisme, qui génère le plus de rayonnement THz, est principalement étudié dans ce manuscrit. Si la puissance crête de l'impulsion laser est suffisamment élevée, des filaments de lumière peuvent être formés par combinaison de l'effet Kerr focalisant et de la formation d'un plasma défocalisant. Le phénomène de filamentation laser permet ainsi de créer des ondes THz à distance. En modulant l'impulsion laser, il est aussi possible de modifier les champs et spectres THz associés. En particulier, nous étudions les effets d'une dérive de fréquence et de la combinaison de multi-impulsions sur l'efficacité de conversion laser-THz. Nous consacrons en outre une large part de nos études à l'influence de l'augmentation de la longueur d'onde laser sur le rendement en énergie de l'émission THz. / The terahertz waves (THz), located between the infrared and the microwaves in the electromagnetic spectrum, correspond to the characteristic frequencies of numerous molecular motions and thus make it possible to characterize complex molecules by time-domain spectroscopy. This thesis aims to study the THz fields emitted by a source formed by a two-color laser pulse generating a plasma by air ionization. Due to the time asymmetry of the laser field, an electric current having a low-frequency component in the THz range is formed in the plasma by nonlinear conversion, generating a secondary field including a THz component. The nonlinear effects involved in the generation of THz radiation are the Kerr effect at low intensity (< 10¹³ W/cm²) and the photocurrents at higher intensity (> 10¹³ W/cm²), above the ionization threshold. This latter mechanism, which generates the most THz radiation, is mainly studied in this manuscript. If the peak power of the laser pulse is sufficiently high, light filaments can be created by combining the focusing Kerr effect and the defocusing action of the plasma. So, the filamentation process can produce THz waves remotely. By modulating the laser pulse, it is possible to modify the associated THz fields and spectra. In particular, we study the effects of pulse chirping and multi-pulse combination. We also devote a large part of our studies to the influence of increasing the laser wavelength on the THz energy yield.
|
7 |
Laser nano ablation induced by the interaction of femtosecond laser with metal surfaces / フェムト秒レーザーと金属表面の相互作用により誘起されるレーザーナノアブレーションMiyasaka, Yasuhiro 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18539号 / 理博第4015号 / 新制||理||1579(附属図書館) / 31439 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 阪部 周二, 教授 田中 貴浩, 准教授 橋田 昌樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
8 |
IN-SITU IMAGING OF LASER-MATTER INTERACTIONS AND HEAT TRANSFER AT THE NANOSCALETugba Isik (13162059) 27 July 2022 (has links)
<p> </p>
<p>The investigation of laser-matter interactions has gained interest over the years due to the importance of these interactions in materials synthesis, diagnostics, electronics, and photonics. In-situ transmission electron microscopy (TEM) techniques are invaluable for real-time monitoring of dynamic processes in these systems at the nanoscale. In this work, the effect of pulsed laser heating on the reactions of energetic materials, plasmonic structures, and multilayer thin films has been studied by utilizing ultrafast transmission electron microscopy (UTEM) techniques. Heat transfer and electric field calculations have been carried out to compare and support the experimental findings. </p>
<p>The photothermal reaction of an aluminum-fluoropolymer composite is studied to show the effect of pulsed laser heating on reactions of reactive materials. An aluminum nanoparticle - THV (terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride) sample is subjected to rapid heating and cooling cycles by employing the integrated laser system of an UTEM. TEM images and real-time movies (30 frame/s) are acquired to reveal the changes during the reaction. Heat transfer simulations proved that the temperature of the sample was high enough to trigger the decomposition of THV and start its reaction with Al nanoparticles. Electron diffraction patterns revealed that the reaction product was the rare and metastable η-phase aluminum fluoride (AlF3). The experimental and theoretical results showed that rapid pulsed laser heating and subsequent cooling of a nanoscale sample influences the phases that can form and be utilized to investigate other systems.</p>
<p>Pulsed laser-assisted merging and alloying of noble metals are also studied to explore the fabrication of beaded gold-silver nanowires with a variety of morphology and composition. In-situ laser heating of plasmonic silver nanowire (Ag NW) - gold nanoparticle (Au NP) couples are performed inside an UTEM, and direct visualization of the evolution process gives insights into the formation mechanism. Experimental results show that silver melts at the surface to bridge the nanometer-sized gap between the NP and the NW, forming a cup-like morphology underneath the Au NP via capillary action. Progressive laser irradiation leads to wetting of the Au NP and the formation of a valley in the Ag NW around the NP, which flattens gradually by partial embedding of the NP. Inter-diffusion of Au into Ag and vice versa sets in at this stage, leading to depletion of Au from the Au-rich NP region. Prolonged irradiation and heating lead to gradual inter-mixing of Au-Ag, forming a beaded Au-doped Ag nanowire with homogeneous composition. Such a step-by-step understanding of the merging and alloying process has implications in nanowelding, which holds a future in designing efficient, transparent conductors and printed electronics. Numerical simulations are performed to calculate the electromagnetic enhancement at the interface of adjacent NPs and NWs and provide information on heat generation rates in NP-NW couples at the early stages of the nanowelding process. </p>
<p>In the third chapter, laser-induced irreversible dynamics in electron beam sensitive organic energetic crystals and ultrathin multilayer films are studied by single-shot UTEM imaging. After various sample preparation methods are developed and compared for the well-controlled synthesis of nanoscale ammonium perchlorate samples on TEM grids, decomposition dynamics of ammonium perchlorate crystals are captured via single-shot imaging. The experimental data showed that the sublimation and decomposition are visible ~30 ns after the sample excitation laser in crystals smaller than 5 µm. Dependency of decomposition to crystal porosity and thickness is also observed with crack formation in some cases. In the following section, pulsed-laser irradiation is utilized to realize deformation in thin multilayer films under high temperatures, and triggered dynamic processes are investigated through single-shot imaging. Laser-assisted periodic wrinkle formation is demonstrated on SiN membranes coated with Ti/Ni bilayers. The resulting structures showed periodic wrinkling of the SiN membrane and corrugated surface formation on both sides of the film. Overall, the dissertation highlights the potential of ultrafast transmission electron microscopy in discovering fundamental processes related to, but not limited to, reactive materials, plasmonic nanomaterials, and ultrathin multilayer films. </p>
|
9 |
Déformations mécaniques de l'hydrogène solide pour la fabrication de cibles cryogéniques continues submillimétriques pour l'accélération laser-plasma / Mechanical deformations of solid hydrogen for the fabrication of submillimetric continuous cryogenic targets for laser-plasma accelerationMichaux, Sylvain 04 March 2019 (has links)
L’interaction d’un laser de haute énergie avec une cible fine d’hydrogène créé un plasma à l’intérieur duquel le champ électrostatique peut accélérer des protons jusqu’à des énergies de quelques dizaines de MeV. Ce domaine de la physique est appelé l’accélération laser/plasma.C’est dans ce contexte que le Service des Basses Températures (CEA, France) a développé en 2014 un prototype permettant de produire par extrusion des rubans d’hydrogène solide de un millimètre de large et de quelques dizaines de micromètres d’épaisseur.Cette thèse étudie la géométrie, la vitesse et la stabilité de ces rubans, qui sont des critères fondamentaux à l’efficacité de l’accélération laser/plasma. Les résultats des campagnes expérimentales menées avec ce prototype dans différents centres laser sont également décrits. Le deuxième et principal objectif de cette thèse consiste à caractériser et mesurer de façon précise les propriétés rhéologiques de l’hydrogène solide, afin de modéliser son écoulement à travers une buse d’extrusion d’épaisseur submillimétrique. Ce travail a consisté à concevoir un rhéomètre cryogénique innovant capable de générer un cisaillement continu d’hydrogène solide à des températures contrôlées, inférieures à 14 kelvins. La déformation de cisaillement de l’hydrogène solide est observée et décrite en détails, et sa viscosité apparente près de son point de fusion est quantifiée. Une loi régissant son écoulement est proposée, puis vérifiée par simulation numérique. / The interaction between a high-energy laser and a thin hydrogen target can generate an electrostatic field accelerating protons up to a few tens of MeV. This scientific field is called "laser/plasma acceleration". In this context, the Low Temperature Laboratory (CEA, France) has designed in 2014 a prototype extruding thin solid-hydrogen ribbon-shaped targets of onemillimeter in width and a few tens of micrometers in thickness.This Ph.D. thesis studies the geometry, the stability and the velocity of these ribbons, which are critical in the laser/matter interaction. Experimental campaigns led with this prototype in different laser facilities are described as well. The second and main objective of this Ph.D. thesisis to charaterize and measure the rheological properties of solid Hydrogen, in order to model its flow through a submillimeter-wide extrusion nozzle. This characterisation has been made possible through the design of an innovative cryogenic rheometer generating a continuous shear deformation in solid hydrogen at controled temperature, below 14 kelvins. Shear deformationof solid Hydrogen is studied and detailled, and its apparent viscosity near its melting point is measured. A deformation law is stated, then tested by numerical simulation.
|
10 |
Ultrashort Light Sources from High Intensity Laser-Matter InteractionKöhler, Christian 31 May 2012 (has links) (PDF)
The thesis deals with the development and characterization of new light sources, which are mandatory for applications in atomic and molecular spectroscopy, medical and biological imaging or industrial production. For that purpose, the employment of interactions of high intensity ultra-short laser pulses with gaseous media offers a rich variety of physical effects which can be exploited. The effects are characterized by a nonlinear dependency on the present light fields. Therefore, accurate modeling of the nonlinearities of the gas is crucial. In general, the nonlinearities are due to the electronic response of the gas atoms to the light field and one distinguishes between the response of bound and ionized electrons.
The first part investigates laser pulse self compression, where the consideration of a purely bound electron response is sufficient. We apply an exotic setup with an negative Kerr nonlinearity in order to avoid spatial collapse of the beam on the cost of dealing with an highly dispersive nonlinearity. Analytical analysis and numerical simulations prove the possibility of laser pulse compression in such setups and reveals a new compression scheme, where the usually disturbing dispersion of the nonlinaerity is responsible for compression.
Dealing with tera-Hertz generation by focusing an ionizing two-color laser pulse into gas, the second part exploits a medium nonlinearity caused by ionized electrons. We reveal in a mixed analytical and numerical analysis the underlying physical mechanism for THz generation: ionized electrons build up a current, which radiates. Thereby, the the two-color nature of the input laser is crucial for the emitted radiation to be in the tera-Hertz range. Combining this physical model with a pulse propagation equation allows us to achieve remarkable agreement with experimental measurements.
Finally, the third part deals with nonlinearities from bound as well from ionized electrons on a fundamental level. We advance beyond phenomenological models for responses of bound and ionized electrons and quantum mechanically model the interaction of an ultra-short laser pulse with a gas. Already the simplest case of one dimensional hydrogen reveals basic features. For low intensities, the Kerr nonlinearity excellently describes the response of bound electrons. For increasing intensity, ionization becomes important and the response from ionized electrons is the governing one for high intensities. This quantum mechanical correct modeling allows us to explain saturation and change of sing of the nonlinear refractive index and to deduce suited approximate models for optical nonlinearities.
|
Page generated in 0.1751 seconds