1 |
Generation and detection of nonlinear Lamb waves for the characterization of material nonlinearitiesBermes, Christian 25 August 2006 (has links)
An understanding of the generation of higher harmonics in Lamb waves is of critical importance for applications such as remaining life prediction of plate-like structural components. The objective of this work is to use nonlinear Lamb waves to experimentally investigate inherent material nonlinearities in aluminum plates. These nonlinearities, e.g. lattice anharmonicities, precipitates or vacancies, cause higher harmonics to form in propagating Lamb waves. The amplitudes of the higher harmonics increase with increasing
propagation distance due to the accumulation of nonlinearity while the Lamb wave travels along its path. Special focus is laid on the second harmonic, and a relative nonlinearity parameter is defined as a function of the fundamental and
second harmonic amplitude. The experimental setup uses an ultrasonic transducer and a wedge for the Lamb wave generation and laser interferometry for detection. The experimentally measured Lamb wave
signals are processed with a short-time Fourier transformation (STFT) and a chirplet transformation-based algorithm, which yield
the amplitudes of the frequency spectrum as functions of time,
allowing the observation of the nonlinear behavior of the material. The increase of the relative nonlinearity parameter with propagation distance as an indicator of cumulative second harmonic generation is shown in the results for two different aluminum alloys. The difference in
inherent nonlinearity between both alloys as determined from longitudinal wave measurements can be observed for the Lamb wave measurements, too.
|
2 |
Microelectronics Device Inspection System Implementation and Modeling for Flip Chips and Multi-Layer Ceramic CapacitorsErdahl, Dathan S. (Dathan Shane) 15 April 2005 (has links)
Increased demand for smaller electronics is driving the electronic packaging industry to develop smaller, more efficient component level packages. Surface mounted components, such as flip chips, ball grid arrays (BGAs), and chip-scale packages (CSPs), are being developed for use in high-volume production. All of these technologies use solder bumps to attach the active silicon to the substrate, and traditional nondestructive methods such as machine vision, acoustic microscopy or x-ray inspection cannot easily find solder bump defects.
Therefore, a system, consisting of an Nd:YAG laser that delivers pulses of infrared energy to the surface of the chip, a laser interferometer to record surface vibrations, and a high-speed data acquisition system to record the signals, was developed. The pulsed laser generates ultrasound on the chips surface, exciting the whole chip into a vibration motion, and the interferometer measures the vibration displacement of the chips surface at several points. Changes in the quality of the device or its attachment to the board produce changes in the free vibration response. Characterization of the differences between good devices and devices with defects, both in time domain and frequency domain, is performed using signal analysis.
The system has inspected flip chips and chip scale packages for missing and misaligned solder balls, but to characterize the resolution of the system for open solder joints, a study of the vibration modes excited by the laser source in a flip chip was performed on specimens with intentionally created defects. Experimental measurements of excited modes were compared with a modal analysis model created in ANSYS, and defects were detected as small changes in the mode shape on the surface of the chips.
Current inspection methods have also been inadequate for inspecting multi-layer ceramic capacitors (MLCCs). Flex cracks, caused by manufacturing processes, often cause the capacitors to fail in-service. Samples that have been cracked intentionally were compared with reference samples to determine the feasibility of using this technique to monitor the condition of MLCCs on an assembly line. Currently, there is no on-line inspection method for controlling this problem, but this technique was able to differentiate between good and damaged capacitors.
|
3 |
Experimental Investigation of Laser-Induced Optoacoustic Wave Propagation for Damage DetectionJanuary 2019 (has links)
abstract: This thesis intends to cover the experimental investigation of the propagation of laser-generated optoacoustic waves in structural materials and how they can be utilized for damage detection. Firstly, a system for scanning a rectangular patch on the sample is designed. This is achieved with the help of xy stages which are connected to the laser head and allow it to move on a plane. Next, a parametric study was designed to determine the optimum testing parameters of the laser. The parameters so selected were then used in a series of tests which helped in discerning how the Ultrasound Waves behave when damage is induced in the sample (in the form of addition of masses). The first test was of increasing the mases in the sample. The second test was a scan of a rectangular area of the sample with and without damage to find the effect of the added masses. Finally, the data collected in such a manner is processed with the help of the Hilbert-Huang transform to determine the time of arrival. The major benefits from this study are the fact that this is a Non-Destructive imaging technique and thus can be used as a new method for detection of defects and is fairly cheap as well. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019
|
4 |
Quality assessments of solder bump interconnections in ball grid array packages using laser ultrasonics and laser interferometerGong, Jie 27 May 2016 (has links)
Surface mount devices (SMDs), such as flip chip packages and ball grid array (BGA) packages are gaining in popularity in microelectronics industry because they provide high density inputs/outputs, better electrical and thermal performance. However, these solder bump interconnections in SMDs are sandwiched between the silicon die and the substrate, which makes them challenging to be inspected. Current non-destructive solder bump inspection techniques like electrical testing, X-ray and acoustic microscopy have some application gaps. New solder bump inspection technique is urgently needed to fill these gaps. Previous work has shown the potential of using a non-contact, non-destructive laser ultrasonics and laser interferometer based inspection system for assessing solder bump qualities. The system uses a pulsed Nd:YAG laser to induce ultrasound in the chip packages and a laser interferometer to measure the transient out-of-plane displacement on the package surface. The quality of the solder bumps can be evaluated by analyzing the out-of-plane displacement. However, there are still some gaps that need to be addressed before the system is ready on the shelf. This dissertation focuses on addressing some of these existing issues. The research work consists of the following: 1) a control interface was developed to integrate all the different modules to achieve automation. 2) a new signal-processing method for analyzing the transient out-of-plane displacement signals without requiring a known-good reference chip was developed. 3) the application scope of the system was expanded to inspect the second level solder bumps in BGA packages. Two types of process-induced defects including poor-wetting and solder bump voids were investigated. Meanwhile, solder bump fatigue caused by cyclic mechanical bending and thermal cycle was also studied using this system. 4) a finite element analysis was performed to study the thermo-mechanical reliability of solder bumps in PBGA package under cyclic thermal loads. The successful completion of the research objectives has led to a laser ultrasound solder bump inspection system prototype with more user-friendliness, higher throughputs, better repeatability and more flexibility, which accelerate the commercialization the system.
|
5 |
Quality inspection and reliability study of solder bumps in packaged electronic devices: using laser ultrasound and finite element methodsYang, Jin 25 August 2008 (has links)
Consumer demands are driving the current trend in the microelectronics industry to make electronic products that are miniature, fast, compact, high-density, reliable and low-cost. The use of surface mount devices (SMDs) has helped to decrease the size of electronic packages through the use of solder bump interconnections between the devices and the substrates/printed wiring boards (PWBs). Solder bumps act as not only mechanical, but also electrical interconnections between the device and the substrate/PWB. Common manufacturing defects ¨C such as open, cracked, missing, and misaligned solder bumps ¨C are difficult to detect because solder bumps are hidden between the device and the substrate/PWB after assembly. The reliability of packaged electronic devices in storage and usage is a major concern in the microelectronics industry. Therefore, quality inspection of solder bumps has become a critical process in the microelectronics industry to help ensure product quality and reliability.
In this thesis, a methodology for quality evaluation and reliability study of solder bumps in electronic packages has been developed using the non-destructive and non-contact laser ultrasound-interferometric technique, finite element and statistical methods in this research work. This methodology includes the following aspects: 1) inspection pattern ¨C specific inspection patterns are created according to inspection purpose and package formats, 2) laser pulse energy density calibration ¨C specific laser pulse power and excitation laser spot size are selected in terms of package formats, 3) processing and analysis methods, including integrated analytical, finite element and experimental modal analyses approach, advanced signal processing methods and statistical analysis method, 4) approach combining modal analysis and advanced signal processing to improve measurement sensitivity of laser ultrasound-interferometric inspection technique, and 5) calibration curve using energy based simulation method and laser ultrasound inspection technique to predict thermomechanical reliability of solder bumps in electronic packages.
Because of the successful completion of the research objectives, the system has been used to evaluate a broad range of solder bump defects in a variety of packaged electronic devices. The development of this system will help tremendously to improve the quality and reliability of electronic packages.
|
6 |
Implementation of Fiber Phased Array Ultrasound Generation System and Signal Analysis for Weld Penetration ControlMi, Bao 24 November 2003 (has links)
The overall purpose of this research is to develop a real-time ultrasound based system for controlling robotic weld quality by monitoring the weld pool. The concept of real-time weld quality control is quite broad, and this work focuses on weld penetration depth monitoring and control with laser ultrasonics. The weld penetration depth is one of the most important geometric parameters that define the weld quality, hence remains a key control quantity. This research focuses on the implementation and optimization of the laser phased array generation unit and the development of signal analysis algorithms to extract the weld penetration depth information from the received ultrasonic signals. The system developed is based on using the phased array technique to generate ultrasound, and an Electro-Magnetic Acoustic Transducer (EMAT) as a receiver. The generated ultrasound propagates through the weld pool and is picked up by the EMAT. A transient FE model is built to predict the temperature distribution during welding. An analytical model is developed to understand the propagation of ultrasound during real-time welding and the curved rays are numerically traced. The cross-correlation technique has been applied to estimate the Time-of-Flight (ToF) of the ultrasound. The ToF is then correlated to the measured weld penetration depth. The analytical relationship between the ToF and penetration depth, obtained by a ray-tracing algorithm and geometric analysis, matches the experimental results.
The real-time weld sensing technique developed is efficient and can readily be deployed for commercial applications. The successful completion of this research will remove the major obstacle to a fully automated robotic welding process. An on-line welding monitoring and control system will facilitate mass production characterized by consistency, high quality, and low costs. Such a system will increase the precision of the welding process, resulting in quality control of the weld beads. Moreover, in-process control will relieve human operators of tedious, repetitive, and hazardous welding tasks, thus reducing welding-related injures.
|
7 |
High Resolution Ultrasonic Rayleigh Wave Interrogation of a Thermally Aged Polymeric SurfaceFreed, Shaun L. January 2010 (has links)
No description available.
|
8 |
Laser ultrasonics in a diamond anvil cell for investigation of simple molecular compunds at ultrahigh pressures / Ultrasons laser dans les cellules à enclume de diamant pour l'étude des composés moléculaires simples à ultrahautes pressionsNikitin, Sergey 19 January 2015 (has links)
Le travail que j’ai effectué durant ce doctorat est dédié à l’utilisation de l’ultrason des lasers sous haute pression physique. La recherche est construite en utilisant les récentes techniques de mesure de laser ultrasonique dans une enclume de diamant, conduisant à l’exploration de la propagation du son et de sa détermination suivant la vitesse de l’onde acoustique sous ultra-hautes pressions. La diffusion Brillouin a été appliquée ici pour déterminer l’épaisseur de la glace polycristalline compressée dans l’enclume à diamant sous pressions de mégabars. La technique permet d’examiner les caractéristiques des dimensions des inhomogénéités élastiques et la texture de la glace polycristalline, de ce fait ce processus est commun pour les surfaces de l’enclume à diamant avec des sous micromètres de résolution spatiale via les mesures des variations résolues dans le temps sur la vitesse de propagation du pouls acoustique voyageant dans l’échantillon compressé. Ceci a été appliqué pour mesurer la vitesse acoustique dans du H2O à l’état de glace jusqu’à 84 Gpa. La technique d’imagerie développée contient, pour chaque cristallite (ou groupe de cristallites) dans un ensemble homogène chimique transparent, des informations utiles sur son orientation ainsi que sur sa valeur élastique modulée par rapport à la direction de la propagation du son. Cela répand les bases pour une application réussite sur la déformation de solides sous haut-développement de modèles micromécaniques sous la pression à mégabars. Pour une plus longue durée, ce genre d’expériences répandus sur les minéraux de la terre et avec des températures basses ou hautes, assurerait un progrès important dans la compréhension de la construction de la cape terrestre, son évolution ainsi que celle d’autres planètes. / This PhD research work is devoted to the use of laser ultrasound in high-pressure physics. The research is done using the recently established technique of laser ultrasonic measurements in a diamond anvil cell which allows investigation of the sound propagation and determination of the acoustic wave velocities at ultrahigh pressures. Time domain Brillouin scattering was applied here to depth-profiling of polycrystalline aggregate of ice compressed in a diamond anvil cell to megabar pressures. The technique allowed examination of characteristic dimensions of elastic inhomogeneities and texturing of polycrystalline ice in the direction, normal to the diamond anvil surfaces with sub-micrometer spatial resolution via time-resolved measurements of variations in the propagation velocity of the acoustic pulse travelling in the compressed sample. It was applied to measure the acoustic velocities in H2O ice up to 84 Gpa. The developed imaging technique provides, for each crystallite (or a group of crystallites) in chemically homogeneous transparent aggregate, usable information on its orientation as well as on the value of the elastic modulus along the direction of the sound propagation. This extends the basis for a successful application of highly developed micromechanical models of solids deformation at mbar pressure. On long term, such experiments extended to earth’s minerals and high or low temperatures would insure a significant progress in understanding of convection of the earth’s mantle and thus evolution of this and other planets.
|
Page generated in 0.0739 seconds