Spelling suggestions: "subject:"later saint""
1 |
The intraction of associative polymer with inorganic pigment dispersion /Sa-nguandekul, Sopee, January 1997 (has links)
Thesis (Ph. D.)--Lehigh University, 1997. / Includes vita. Includes bibliographical references.
|
2 |
Characterization of the interphase in a model water soluble associative polymer/particle system and its adsorption/desorption behavior /Heck, Connie S., January 1997 (has links)
Thesis (Ph. D.)--Lehigh University, 1997. / Includes vita. Includes bibliographical references.
|
3 |
San Luis Obispo In A Box: Damage Accumulation And Combined Stressor Matching In Accelerated UV TestingCausey, Cameron N 01 June 2024 (has links) (PDF)
The goal of service life prediction is to accurately predict the useful lifetime of a coating system in a typical service environment. Field testing is the most true-to-life form of service life testing but requires long exposure times, often not quick enough to readily aid redesign in the product development cycle. As an alternative, accelerated weathering chambers are used to speed up coating failure in a laboratory setting. These devices do indeed accelerate failure but often produce failure modes that are not seen in actual service or produce material rankings that are not reproducible. This work explores the principle of cumulative stressor damage for an exterior architectural coating being exposed to outdoor conditions in San Luis Obispo, California, as well as an accelerated UV/moisture protocol. The accelerated UV/moisture protocol is executed first by ASTM D4587, and then by creating a custom exposure test cycle based on locally observed weather. Comparison of failure mode and quantification of failure is determined by gloss and spectral reflectance measurements. Finally, acceleration factor determination for the new SLO-in-a-box protocol is outlined, with a discussion of preliminary results.
|
4 |
Composition Effects on Sheen and Spread Rate of an Interior Flat, One Coat Latex Paint FormulationChristensen, Dana James, II 01 August 2015 (has links)
Interior flat, white latex paint is a common coating applied to walls around the world. Development of a coating with one coat hide capability is a pinnacle achievement for paint formulators as it has the potential to save consumers both time and money. One coat paints already exist on the market, but they are limited in color, coverage, and often have many disclaimers. Work done was part of a project initiated by ChemoursTM Titanium Technologies.
The goal of the project presented in this article was to create an interior flat, white latex paint that yields a spread rate of greater than 400 ft2/gal., which is advertised by many below critical pigment volume concentration (CPVC) commercial paints. In order to achieve this goal, an above CPVC paint with a high TiO2 content was created and continuously improved. Improvement of the formulation involved numerous experimental variations including adjustments to the hydroxyethylcellulose (HEC) molecular weight, dispersant chemistry, latex chemistry, TiO2 concentration, extender package, and rheology modifier type. The sheen value, relative light scattering, and spread rate were the main measurements conducted in order to judge formulation improvement.
Complications with the spread rate procedure forced its adaptation in order to collect less variable data with the high density, shear thinning formulations. It was found that shorter opacity charts yielded more precise spread rate data than the longer opacity charts. An attempt at correlating rheology with sheen development resulted in the conclusion that the pigment and extender particle package is the greatest driving factor behind sheen reduction. The rheology modifier type and dispersant chemistry did not affect the flatness of the paint nearly as much. A Keyence VR-3000 series One-Shot 3D Measuring Macroscope was used to show that surface roughness does not directly correlate to the sheen value when a number of flat paints with different sheens were analyzed.
This project is an ongoing effort and the information contained in this document will substantially help future development.
|
5 |
Ozone Interaction with Indoor Building Materials and HVAC FiltersAbbass, Omed Akber 16 August 2017 (has links)
As modern life develops, humans spend most of their time inside buildings. Understanding the effects of different building materials that exist indoors on indoor air quality is crucial to ensure comfort, health, and productivity of building occupants. Indoor air quality (IAQ) is an important field of building science that focuses on studying the existence of different compounds indoors. These compounds include: airborne particles such as dust, volatile organic compounds (VOCs) such as carbonyls, reactive gases such as radon, ozone and others. Ozone is a strong oxidant gas that has adverse effects on human health, and is highly reactive with building materials that exist indoors. This reaction may reduce its concentration indoors, but may produce other by-products that could be more harmful for human health than ozone itself.
In this dissertation, ozone reaction with different building materials is investigated in four studies. The first includes studying the effect of indoor carpet fiber type on ozone removal and carbonyl emissions. This study provides valuable data and knowledge about the importance of selecting carpet type and its effect on indoor environment. In the second study, different indoor plants were tested to evaluate their ability to remove ozone. The results from this study show wide variation between plants tested on ozone removal. Also, the ability of plants as ozone removal agent changes as light levels change. The third part studies ozone removal efficiency of HVAC filters previously installed in air handling units located on green and white membrane roofs of a commercial building. Detailed filter surface analysis using scanning electron microscope (SEM) was performed to understand the nature of deposits on these filters. The reason for differences in ozone removal efficiency of two filters in comparison with new filter is also discussed. The fourth study investigated ozone removal and carbonyl emissions from three different VOC content indoor latex paints. The outcomes from this research show that zero VOC latex paint has the most ozone effective removal capacity and this paint is the least carbonyl emitter.
The research presented in this dissertation adds new data, valuable knowledge, and expands the understanding of the importance of selecting indoor materials to raise indoor air quality and make the buildings' indoor environment healthier and safer.
|
Page generated in 0.0938 seconds