Spelling suggestions: "subject:"lattice polytope""
1 |
Computational and Geometric Aspects of Linear OptimizationGuan, Zhongyan January 2021 (has links)
Linear optimization is concerned with maximizing, or minimizing, a linear objective
function over a feasible region defined as the intersection of a finite number
of hyperplanes. Pivot-based simplex methods and central-path following interior
point methods are the computationally most efficient algorithms to solve linear
optimization instances. Discrete optimization further assumes that some of the
variables are integer-valued. This dissertation focuses on the geometric properties
of the feasible region under some structural assumptions. In the first part, we consider
lattice (d,k)-polytopes; that is, the convex hull of a set of points drawn from
{0,1,...,k}^d, and study the largest possible diameter, delta(d,k), that a lattice (d,k)-
polytope can achieve. We present novel properties and an enumeration algorithm
to determine previously unknown values of delta(d,k). In particular, we determine
the values for delta(3,6) and delta(5,3), and enumerate all the lattice (3,3)-polytopes
achieving delta(3,3). In the second part, we consider the convex hull of all the 2^(2^d - 1)
subsums of the 2^d - 1 nonzero {0,1}-valued vectors of length d, and denote by
a(d) the number of its vertices. The value of a(d) has been determined until d =8
as well as asymptotically tight lower and upper bounds for loga(d). This convex
hull forms a so-called primitive zonotope that is dual to the resonance hyperplane
arrangement and belongs to a family that is conjectured to include lattice polytopes
achieving the largest possible diameter over all lattice (d,k)-polytopes. We
propose an algorithm exploiting the combinatorial and geometric properties of the
input and present preliminary computational results. / Thesis / Doctor of Philosophy (PhD)
|
2 |
On k-normality and regularity of normal projective toric varietiesLe Tran, Bach January 2018 (has links)
We study the relationship between geometric properties of toric varieties and combinatorial properties of the corresponding lattice polytopes. In particular, we give a bound for a very ample lattice polytope to be k-normal. Equivalently, we give a new combinatorial bound for the Castelnuovo-Mumford regularity of normal projective toric varieties. We also give a new combinatorial proof for a special case of Reider's Theorem for smooth toric surfaces.
|
3 |
Unimodular Covers and Triangulations of Lattice Polytopesv.Thaden, Michael 17 June 2008 (has links)
Diese Arbeit befasst sich mit der unimodularen Überdeckung und Triangulierung von Gitterpolytopen. Zentral ist in diesem Zusammenhang die Angabe einer möglichst guten oberen Schranke c0, so dass die Vielfachen cP eines Polytopes P für alle c>c0 eine unimodulare Überdeckung besitzen. Bruns und Gubeladze haben erstmals die Existenz einer solchen Schranke nachgewiesen und konnten sogar explizit eine solche in Abhängigkeit von der Dimension des Polytopes angeben. Allerdings war diese Schranke super-exponentiell. In dieser Arbeit wird nun u.a. eine polynomielle obere Schranke hergeleitet.
|
4 |
Méthodes probabilistes pour l'étude asymptotique des partitions entières et de la géométrie convexe discrète / Probabilistic methods for the asymptotic study of integral partitions and discrete convex geometryBureaux, Julien 08 December 2015 (has links)
Cette thèse se compose de plusieurs travaux portant sur l'énumération et le comportement asymptotique de structures combinatoires apparentées aux partitions d'entiers. Un premier travail s'intéresse aux partitions d'entiers bipartites, qui constituent une généralisation bidimensionnelle des partitions d'entiers. Des équivalents du nombre de partitions sont obtenus dans le régime critique où l'un des entiers est de l'ordre du carré de l'autre entier et au delà de ce régime critique. Ceci complète les résultats établis dans les années cinquante par Auluck, Nanda et Wright. Le deuxième travail traite des chaînes polygonales à sommets entiers dans le plan. Pour un modèle statistique introduit par Sinaï, une représentation intégrale exacte de la fonction de partition est donnée. Ceci conduit à un équivalent du nombre de chaînes joignant deux points distants qui fait intervenir les zéros non triviaux de la fonction zêta de Riemann. Une analyse combinatoire détaillée des chaînes convexes est présentée. Elle permet de montrer l'existence d'une forme limite pour les chaînes convexes aléatoires ayant peu de sommets, répondant ainsi à une question ouverte de Vershik. Un troisième travail porte sur les zonotopes à sommets entiers en dimension supérieure. Un équivalent simple est donné pour le logarithme du nombre de zonotopes contenus dans un cône convexe et dont les extrémités sont fixées. Une loi des grands nombres est établie et la forme limite est caractérisée par la transformée de Laplace du cône. / This thesis consists of several works dealing with the enumeration and the asymptotic behaviour of combinatorial structures related to integer partitions. A first work concerns partitions of large bipartite integers, which are a bidimensional generalization of integer partitions. Asymptotic formulæ are obtained in the critical regime where one of the numbers is of the order of magnitude of the square of the other number, and beyond this critical regime. This completes the results established in the fifties by Auluck, Nanda, and Wright. The second work deals with lattice convex chains in the plane. In a statistical model introduced by Sinaï, an exact integral representation of the partition function is given. This leads to an asymptotic formula for the number of chains joining two distant points, which involves the non trivial zeros of the Riemann zeta function. A detailed combinatorial analysis of convex chains is presented. It makes it possible to prove the existence of a limit shape for random convex chains with few vertices, answering an open question of Vershik. A third work focuses on lattice zonotopes in higher dimensions. An asymptotic equality is given for the logarithm of the number of zonotopes contained in a convex cone and such that the endings of the zonotope are fixed. A law of large numbers is established and the limit shape is characterized by the Laplace transform of the cone.
|
5 |
Randomized integer convex hullHong Ngoc, Binh 12 February 2021 (has links)
The thesis deals with stochastic and algebraic aspects of the integer convex hull. In the first part, the intrinsic volumes of the randomized integer convex hull are investigated. In particular, we obtained an exact asymptotic order of the expected intrinsic volumes difference in a smooth convex body and a tight inequality for the expected mean width difference. In the algebraic part, an exact formula for the Bhattacharya function of complete primary monomial ideas in two variables is given. As a consequence, we derive an effective characterization for complete monomial ideals in two variables.
|
Page generated in 0.0423 seconds