• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 25
  • 25
  • 24
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 248
  • 248
  • 141
  • 81
  • 64
  • 50
  • 46
  • 44
  • 38
  • 33
  • 27
  • 27
  • 26
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Résonances acoustiques dans un tube corrugué sous écoulement / Acoustics resonances of a corrugated pipe under flow

Galeron, GaËtan 14 May 2018 (has links)
La problématique des résonances acoustiques dans un tube corrugué sous écoulement a été étudiée conjointement sur le plan expérimental et numérique. Des analyses portant sur la structure de l’écoulement lors de l’apparition du sifflement sont réalisées. Elles visent à mieux comprendre la nature du phénomène et le couplage aéroacoustique en jeu.Des expériences en laboratoire sur trois géométries de veines corruguées de petites longueurs(1 à 2 m) ont été réalisées. Un écoulement d’air était appliqué pour des vitesses comprises entre10 et 25 m/s et une pression voisine de la pression atmosphérique faisant apparaître les résonancesacoustiques longitudinales. Des mesures par fil chaud, microphone et par technique laser (Particle ImageVelocimetry) ont permis de caractériser l’écoulement dans des conditions favorisant le sifflement. Sur ces différentes mesures, nous avons appliqué une technique de reconstitution spatio-temporelle, laLinear Staochastic Estimation (LSE). Des simulations numériques de type Lattice Boltzmann (2D, codePOWERFLOW, EXA) ont permis de prédire ce phénomène aéroacoustique avec une bonne détermination des modes préférentiels selon les conditions d’écoulement dans un tuyau corrugué court(1 à 2 m).Finalement, des essais à haute pression (P < 40 bars) conduits sur un riser industriel de 18 m ontcomplété cette étude. Dans ce cas, la résonance produite devenait transverse. Des traitements dessignaux tels que la transformation de Hilbert Huang ou par ondelettes de Gabor ont été appliqués mettant en évidence l’influence de la géométrie des corrugations sur le sifflement en temps, en fréquence et enamplitude.Dans les deux configurations, que ce soit en laboratoire ou en installation industrielle, les structures au sein de l’écoulement, dont la fréquence caractéristique était celle du sifflement, se déplaçaient à la vitesse de l’écoulement. Dans les deux cas, lorsque le tuyau corrugué se met à chanter, les mesures de vitesse et de pression dans l’écoulement montre une prédominance du pseudo-bruit sur le signal sonore. L’excitation observée sur les risers en condition de sifflement est celle d’un pseudo-bruit de niveau defluctuations très important sans distorsion non linéaire, et ce malgré un niveau de 170 dB. / The problem of acoustic resonances in a corrugated pipe under flow has been studied both experimentally and numerically. Analyzes concerning the flow structure during the whistling phenomenon are performed. They aim to better understand the nature of the phenomenon and the aeroacoustic coupling involved.Laboratory experiments were carried out on three geometries of corrugated veins of short lengths(1 to 2 m). An air flow was applied for speeds between 10 and 25 m/s and a pressure close toatmospheric pressure showing the longitudinal acoustic resonances. Measurements by hotwires,microphone and laser technique (Particle Image Velocimetry) allowed to characterize the flow under conditions favoring whistling. On these different measures, we applied a spatio-temporal reconstructiontechnique, the Linear Staochastic Estimation (LSE). Numerical simulations of Lattice Boltzmann method (2D, POWERFLOW code, EXA) have made possible the prediction of this aeroacousticphenomenon with a good determination of the preferential modes according to the flow conditions in ashort corrugated pipe (1 to 2 m).Finally, high pressure tests (P < 40 bars) conducted on an industrial riser of 18 m completed thisstudy. In this case, the resonance produced became transverse. Signal processing such as the HilbertHuang transformation or Gabor wavelet has been applied, highlighting the influence of the corrugation geometry on whistling in time, frequency and amplitude.In both configurations, whether in the laboratory or in an industrial facility, the structures within the flow, whose characteristic frequency was whistling, moved at the rate of flow. In both cases, when the corrugated pipe sings, velocity and pressure measurements in the flow show a predominance of the pseudo-noise on the sound signal. The excitation observed on the risers in the whistling condition is that of a pseudo-noise of very high level of fluctuations without non-linear distortion, and this despite a level of 170 dB.
32

Modèle de frontières immergées pour la simulation d'écoulements de fluide en interaction avec des structures poreuses / Immersed boundery model for the simulation of fluid flows in interaction with moving porous structures

Pepona, Marianna 08 November 2016 (has links)
Un large spectre d’applications en ingénierie est concerné par les écoulements de fluides en interaction avec des structures poreuses, allant de problèmes à petite échelle jusqu’à des problématiques de plus grande échelle. Ces structures poreuses, souvent à géométries complexes, peuvent se déplacer ou se déformer en réponse au forçage exercé par l’écoulement environnant.Le but de ce travail est de proposer un modèle numérique pour la simulation macroscopique d’écoulements de fluide interagissant avec des milieux poreux mobiles à géométries complexes, qui soit facile d’implémentation et pouvant être utilisé dans une large gamme d’applications. Pour atteindre cet objectif, la méthode de Lattice Boltzmann est utilisée pour résoudre l’écoulement dans des milieux poreux à l’échelle d’un volume représentatif élémentaire. Pour l’implémentation du mouvement désiré, le concept de frontières immergées est adopté. Dans ce contexte, un nouveau modèle est proposé pour traiter des milieux poreux en volume, dont la résistance à l’écoulement environnant est modélisé par la loi de Brinkman-Forchheimer-Darcy étendue.L’algorithme est d’abord testé sur l’écoulement à travers un cylindre fixe. La simplicité de ce cas test académique permet de caractériser finement la précision de la méthode. Le modèle est ensuite utilisé pour simuler des écoulements de fluide autour et à travers des corps poreux mobiles, à la fois pour des géométries confinées et pour des écoulements ouverts. L’invariance Galiléenne des équations moyennées macroscopiques gouvernant la dynamique du fluide est démontrée. D’excellents accords avec les résultats de référence sont obtenus pour les différents cas testés. / A wide spectrum of engineering problems is concerned with fluid flows in interaction with porous structures, ranging from small length-scale problems to large ones. These structures, often of complex geometry, may move/deform in response to the forces exerted by the surrounding flow. Despite the advancements in computational fluid dynamics, the numerical simulation of such configurations - a valuable tool for the study of the flow physics involved - remains a challenging task.The aim of the present work is to propose a numerical model for the macroscopic simulation of fluid flows interacting with moving porous media of complex geometry, that is easy to implement and can be used in a range of applications. To achieve this, the Lattice Boltzmann method is employed for solving the flow in porous media at the representative elementary volume scale. For the implementation of the desired body motion, the concept of the Immersed Boundary method is adopted. In this context, a novel model is proposed for dealing with moving volumetric porous media, whose resistance to the surrounding flow obeys the Brinkman-Forchheimer-extended Darcy law. The algorithm is initially tested for flow past a static cylinder. The simplicity of this academic test case allows us to assess in detail the accuracy of the proposed method. The model is later used to simulate fluid flows around and through moving porous bodies, both in a confined geometry and in open space. We are able to demonstrate the Galilean invariance of the macroscopic volume-averaged flow governing equations. Excellent agreement with reference results is obtained in all cases.
33

Développement d'une méthode de pénalisation volumique en lattice Boltzmann : application aux domaines mobiles / A combined volume penalization-lattice Boltzmann method : for simulating flows around moving bodies

Benamour, Malek 17 October 2015 (has links)
Les écoulements autour de structures en mouvement font l'objet de plusieurs travaux numériques et expérimentaux. L'objectif de ce travail de thèse consiste à montrer la pertinence de la combinaison de la pénalisation volumique avec la méthode de lattice Boltzmann (LBM), dans l'étude du mouvement d'obstacles mobiles dans un écoulement, et de leur interaction avec celui-ci. La LBM,qui est simple et précise à mettre en œuvre, a prouvé ces dernières années son efficacité dans le domaine de la mécanique des fluides. Par ailleurs, la méthode de pénalisation volumique consiste à introduire un terme de pénalisation dans l'équation que l'on souhaite résoudre, afin de prendre en compte l'influence de l'obstacle sur le domaine fluide. Comme cette équation est résolue sur l'ensemble du domaine composé du fluide et du solide, les conditions aux limites à l'interface fluide-solide sont appliquées de façon naturelle. Il semble donc aisé de combiner cette technique avec la méthode de lattice Boltzmann. Nous avons dans un premier temps rappelé les notions de base et les principales caractéristiques de la méthode de lattice Boltzmann. On a présenté quelques exemples d'applications sur des cas tests, que nous avons programmés. Ensuite, une étude bibliographique faisant état des différentes approches qui utilisent la LBM dans l'étude des problèmes d'interaction fluide structure (IFS) a été réalisée. Puis, la combinaison de la pénalisation volumique avec la LBM a été testée avec succès sur l'équation de Burgers monodimensionnelle. La validation s'est portée en premier lieu, sur un écoulement autour d'un solide fixe, puis sur un écoulement autour d'une structure dont le mouvement est imposé, et finalement sur un problème d'IFS de type masse-ressort. La méthode développée a été ensuite testée sur les équations de Navier-Stokes, en considérant un fluide incompressible et une structure rigide. La validation s'est portée tout d'abord sur un écoulement autour d'obstacles immobiles (carré et cylindre), puis autour d'un cylindre mobile en oscillations forcées et libres. Enfin, une dernière application a été portée sur un écoulement entre deux plaques mobiles dans un canal. Nous avons montré que pour tous les cas étudiés, l'approche développée donne de bons résultats, elle reproduit avec précision les résultats de référence. / Flows around moving bodies are the subject of several numerical and experimental studies. The work presented in this document deals with the implementation of a volume penalization technique in a lattice Boltzmann model (LBM), in order to compute flows around moving obstacles. The LBM, which is accurate and easy to implement, has been successfully applied in fluid mechanics during the last decades. It was thus chosen in the present work, for flow computation. Furthermore, the volume penalization technique consists in introducing a volume penalization term into the equation that needs to be solved, in order to take into account the influence of the obstacle on the fluid domain. Since this equation is solved on both fluid and solid domains, the boundary conditions at the fluid-solid interface are naturally applied. Hence this technique seems easy to implement in a lattice Boltzmann framework. In the first chapter, the foundations and the main features of the lattice Boltzmann method are recalled, and several test cases that we simulated are presented. The second chapter deals with a literature review of the techniques developed for the simulation of fluid structure interaction problems in combination with the LBM. In the third chapter, the volume penalization method combined with the LBM was first applied to the one dimensional Burgers equation, considering motionless and moving obstacles (forced motion, and coupling between the fluid force calculated with the penalized Burgers equation and the motion of the obstacle). The combination of the volume penalization approach and the LBM was then employed to solve the incompressible NavierStokes equations, for cases of flows past motionless obstacles (flows over a square obstacle, and past a circular cylinder), and past an oscillating cylinder (where forced and free oscillations of the cylinder were simulated). Finally, this method was also applied to a symmetric Couette flow. For all these simulated cases, a good agreement with numerical results obtained with other techniques, and with results found in literature, was obtained.
34

Élaboration de méthodes Lattice Boltzmann pour les écoulements bifluides à ratio de densité arbitraire / Elaboration of Lattice Boltzmann methods for two-fluid flow with possibly high-density ratio

Bechereau, Marie 14 December 2016 (has links)
Les extensions bifluides des méthodes Lattice Boltzmann à frontière libre utilisent généralement des pseudopotentiels microscopiques pour modéliser l'interface. Nous avons choisi d'orienter nos recherches vers une méthode Lattice Boltzmann à capture d'interface où la fraction massique d'un des deux fluides, inconnue, est transportée. De nombreux travaux ont montré les difficultés des méthodes Lattice Boltzmann à traiter des systèmes bifluides, et ce d'autant plus que le ratio de densité est important. Nous expliquerons l'origine de ces problèmes en mettant en évidence le manque de diffusion numérique pour capturer précisément les discontinuités de contact. Pour régler cet obstacle, nous proposerons une formulation Arbitrary Lagrangian Eulerian (ALE) des méthodes Lattice Boltzmann. Cela permet de séparer le traitement des ondes matérielles de celui des ondes de pression. Une fois l'étape ALE terminée, une phase de projection ramène les variables sur la grille eulérienne de calcul initiale. Nous expliquons comment obtenir une procédure de projection ayant une précision d'ordre 2 et une interface fine et dépourvue d'oscillations. Il sera montré que la fraction massique satisfait un principe du maximum discret et qu'elle reste donc entre 0 et 1. Les simulations numériques sont en accord avec la théorie. Même si notre méthode n'est pour le moment utilisée que pour simuler des écoulements de fluides non visqueux (Equations d'Euler), nous sommes convaincus qu'elle pourra être étendue à des simulations d'écoulements bifluides visqueux. / Two-fluid extensions of Lattice Boltzmann methods with free boundaries usually consider ``microscopic'' pseudopotential interface models. In this paper, we rather propose an interface-capturing Lattice Boltzmann approach where the mass fraction variable is considered as an unknown and is advected. Several works have reported the difficulties of LBM methods to deal with such two-fluid systems especially for high-density ratio configurations. This is due to the mixing nature of LBM, as with Flux vector splitting approaches for Finite Volume methods. We here give another explanation of the lack of numerical diffusion of Lattice Boltzmann approaches to accurately capture contact discontinuities. To fix the problem, we propose an arbitrary Lagrangian-Eulerian (ALE) formulation of Lattice-Boltzmann methods. In the Lagrangian limit, it allows for a proper separated treatment of pressure waves and advection phenomenon. After the ALE solution, a remapping (advection) procedure is necessary to project the variables onto the Eulerian Lattice-Boltzmann grid.We explain how to derive this remapping procedure in order to get second-order accuracy and achieve sharp stable oscillation-free interfaces. It has been shown that mass fractions variables satisfy a local discrete maximum principle and thus stay in the range $[0,1]$. The theory is supported by numerical computations of rising bubbles (without taking into account surface tension at this current state of development).Even if our methods are currently used for inviscid flows (Euler equations) by projecting the discrete distributions onto equilibrium ones at each time step, we believe that it is possible to extend the framework formulation for multifluid viscous problems. This will be at the aim of a next work.
35

GPU Accelerated Lattice Boltzmann Analysis for Dynamics of Global Bubble Coalescence in the Microchannel

Rou Chen (6993710) 13 August 2019 (has links)
<div> Underlying physics in bubble coalescence is critical for understanding bubble transportation. It is one of the major mechanisms of microfluidics. Understanding the mechanism has benefits in the design, development, and optimization of microfluidics for various applications. The underlying physics in bubble coalescence is investigated numerically using the free energy-based lattice Boltzmann method by massive parametrization and classification.</div><div><br></div><div> Firstly, comprehensive GPU (Graphics Processing Unit) parallelization, convergence check, and validation are carried out to ensure the computational efficiency and physical accuracy for the numerical simulations.</div><div><br></div><div> Then, the liquid-gas system is characterized by an Ohnesorge number (Oh). Two distinct coalescence phenomena with and without oscillation, are separated by a critical Oh (~0.477)number. For the oscillation cases(Oh<0.477), the mechanism of damped oscillation in microbubble coalescence is explored in terms of the competition between driving and resisting forces. Through an analogy to the conventional damped harmonic oscillator, the saddle-point trajectory over the entire oscillation can be well predicted analytically. Without oscillation in the range of 0.50r<sup>-n</sup> </div><div><br></div><div> After that, the liquid-gas-solid interface is taken into consideration in the liquid-gas system. Six cases based on the experiment set-ups are simulated first for validation of the computational results. Based on these, a hypothesis is established about critical factors to determine if coalescence-induced microbubble detachment (CIMD) will occur. From the eighteen experimental and computational cases, we conclude that when the radius ratio is close to 1 and the father bubble is larger, then it will lead to CIMD.</div><div><br></div><div> Lastly, the effects of initial conditions on the coalescence of two equal-sized air microbubbles (R<sub>0</sub>) in water are investigated. In both initial scenarios, the neck bridge evolution exhibits a half power-law scaling, r/R<sub>0</sub>=A<sub>0</sub>(t/t<sub>i</sub>)<sup>1/2</sup> after development time. The development time is caused by the significant bias between the capillary forces contributed by the meniscus curvature and the neck bridge curvature. Meanwhile, the physical mechanism behind each behavior has been explored.</div>
36

Direct simulations of spherical particle motion in non-Newtonian liquids

Prashant, . 11 1900 (has links)
The present work deals with the development of a direct simulation strategy for solving the motion of spherical particles in non-Newtonian liquids. The purely viscous (non-elastic) non-Newtonian liquids are described by Bingham and thixotropy models. Validation of the strategy is performed for single phase (lid driven cavity flow) and two phase flows (sphere sedimentation). Lid driven cavity flow results illustrate the flow evolution of thixotropic liquid and subtle differences between thixotropic rheology and pseudo Bingham rheology. Single sphere sedimentation in Bingham liquid is shown to be influenced by the yield stress of the liquid. Time-dependent properties such as aging prominently affect the settling of a sphere in thixotropic liquid. The hydrodynamic interactions between two spheres are also studied at low and moderate Reynolds numbers. In thixotropic liquid, an intriguing phenomenon is observed where the separation distance between the spheres first increases and then rapidly decreases. / Chemical Engineering
37

Isothermal Gas-liquid Flow Using the Lattice Boltzmann Method

Kim, Donghoon 2011 August 1900 (has links)
As the operating conditions of the pressurized water reactor (PWR) have been increased towards the thermal limits of the core for economics, the subcooled boiling heat transfer performance of the rod bundles under normal operating conditions has become an increasingly important design focus. Effective field models such as two-fluid model, on which most previous numerical studies in the nuclear fields have focused, cannot predict detailed phenomenon of subcooled boiling because it involves complex multiphase dynamics, such as nucleation, growth, detachment bubbles from a wall, deformation, break-up, coalescence, and condensation. It also requires numerous, additional closure relations. On the other hand, direct numerical simulations with interfacial tracking enable us to capture specific two-phase flow and do not require additional empirical closure relations. In this thesis, we simulate isothermal, two-dimensional bubble dynamics as a starting point toward direct simulation of the subcooled boiling. We adopt a lattice Boltzmann method with the phase-field model. The lattice Boltzmann method is a mesoscopic approach well-adapted to the simulation of complex fluids and is simple to implement. The phase field model can capture complex topological deformation, such as coalescence and break-up, with better numerical stability than other interfacial tracking methods like Volume of Fluid (VOF) and level set methods. We validate the present method for stationary and moving two-phase interfaces by comparing with theoretical solutions for a single static bubble in a stationary liquid and a capillary wave, respectively. In addition, the capability of the current method to simulate the coalescence of two bubbles and droplets is validated by comparing with experimental data. To see the applicability of the method to problems involving complex bubble behaviors and interactions with a high-density ratio as in subcooled boiling water, we simulate rising single and double bubbles in a viscous fluid. For a single bubble problem, the bubble shapes and terminal velocity agreed well with the experimental results for different fluid dynamic conditions. For a double bubble case, the current method can capture the interaction and dynamics of the bubbles. Thus, it is expected that this study can serve as a stepping-stone extension to convective subcooled boiling heat transfer in the nuclear reactor core.
38

Improving Small Scale Cooling of Mini-Channels using Added Surface Defects

Tullius, Jami 16 September 2013 (has links)
Advancements in electronic performance lead to a decrease in device size and an increase in power density. Because of these changes, current cooling mechanisms for electronic devices are beginning to be ineffective. Microchannels, with their large heat transfer surface area to volume ratio, cooled with either gas or liquid coolant, have shown some potential in adequately maintaining a safe surface temperature. By modifying the walls of the microchannel with fins, the cooling performance can be improved. Using computational fluid dynamics software, microfins placed in a staggered array on the bottom surface of a rectangular minichannel are modeled in order to optimize microstructure geometry and maximize heat transfer dissipation through convection from a heated surface. Fin geometry, dimensions, spacing, height, and material are analyzed. Correlations describing the Nusselt number and the Darcy friction factor are obtained and compared to recent studies. These correlations only apply to short fins in the laminar regime. Triangular fins with larger fin height, smaller fin width, and spacing double the fin width maximizes the number of fins in each row and yields better thermal performance. Once the effects of microfins were found, an experiment with multi-walled carbon nanotubes (MWNTs) grown on the surface were tested using both water and Al2O3/H2O nanofluid as the working medium. Minichannel devices containing two different MWNT structures – one fully coated surface of MWNTs and the other with a circular staggered fin array of MWNTs - were tested and compared to a minichannel device with no MWNTs. It was observed that the sedimentation of Al2O3 nanoparticles on a channel surface with no MWNTs increases the surface roughness and the thermal performance. Finally, using the lattice Boltzmann method, a two dimensional channel with suspended particles is modeled in order to get an accurate characterization of the fluid/particle motion in nanofluid. Using the analysis based on an ideal fin, approximate results for nanofluids with increase surface roughness was obtained. Microchannels have proven to be effective cooling systems and understanding how to achieve the maximum performance is vital for the innovation of electronics. Implementation of these modified channel devices can allow for longer lasting electronic systems.
39

Modeling electrospinning process and a numerical scheme using Lattice Boltzmann method to simulate viscoelastic fluid flows

Karra, Satish 15 May 2009 (has links)
In the recent years, researchers have discovered a multitude of applications using nanofibers in fields like composites, biotechnology, environmental engineering, defense, optics and electronics. This increase in nanofiber applications needs a higher rate of nanofiber production. Electrospinning has proven to be the best nanofiber manufacturing process because of simplicity and material compatibility. Study of effects of various electrospinning parameters is important to improve the rate of nanofiber processing. In addition, several applications demand well-oriented nanofibers. Researchers have experimentally tried to control the nanofibers using secondary external electric field. In the first study, the electrospinning process is modeled and the bending instability of a viscoelastic jet is simulated. For this, the existing discrete bead model is modified and the results are compared, qualitatively, with previous works in literature. In this study, an attempt is also made to simulate the effect of secondary electric field on electrospinning process and whipping instability. It is observed that the external secondary field unwinds the jet spirals, reduces the whipping instability and increases the tension in the fiber. Lattice Boltzmann method (LBM) has gained popularity in the past decade as the method is easy implement and can also be parallelized. In the second part of this thesis, a hybrid numerical scheme which couples lattice Boltzmann method with finite difference method for a Oldroyd-B viscoelastic solution is proposed. In this scheme, the polymer viscoelastic stress tensor is included in the equilibrium distribution function and the distribution function is updated using SRT-LBE model. Then, the local velocities from the distribution function are evaluated. These local velocities are used to evaluate local velocity gradients using a central difference method in space. Next, a forward difference scheme in time is used on the Maxwell Upper Convected model and the viscoelastic stress tensor is updated. Finally, using the proposed numerical method start-up Couette flow problem for Re = 0.5 and We = 1.1, is simulated. The velocity and stress results from these simulations agree very well with the analytical solutions.
40

A framework for digital watercolor

O'Brien, Patrick Michael 10 October 2008 (has links)
This research develops an extendible framework for reproducing watercolor in a digital environment, with a focus on interactivity using the GPU. The framework uses the lattice Boltzmann method, a relatively new approach to fluid dynamics, and the Kubelka-Munk reflectance model to capture the optical properties of watercolor. The work is demonstrated through several paintings produced using the system.

Page generated in 0.0535 seconds