• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 98
  • 46
  • 38
  • 15
  • 10
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 626
  • 144
  • 101
  • 88
  • 62
  • 60
  • 57
  • 55
  • 53
  • 42
  • 41
  • 38
  • 32
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Anion Exchange and Competition in Layered Double Hydroxides

Wang, Zhiming, 1958- 08 1900 (has links)
Exchange reactions of anions, especially ferrocyanide and carbonate, with layered double hydroxides (LDHs) were investigated in relation to the origin of life on the early Earth. The effect on ferrocyanide exchange of concentration, pH, reaction time and cations are discussed. It was found that there were two different kinds of ferrocyanide species: one was that intercalated into the layered structure, occupying a site of D symmetry within the LDHs, while in the other, the ferrocyanide group retains full O symmetry. In addition, very low concentration, ferrocyanide associated with LDH will change its FTIR absorption shape. Carbonate was much more strongly intercalated than ferrocyanide into the LDHs, probably because of the strong hydrogen bonding.
52

Layered Adaptive Modulation and Coding For 4G Wireless Networks

Wei, Zhenhuan 18 January 2011 (has links)
Emerging 4G standards, such as WiMAX and LTE have adopted the proven technique of Adaptive Modulation and Coding (AMC) to dynamically react to channel fluctuations while maintaining bit-error rate targets of the transmission. This scheme makes use of the estimated channel state indication (CSI) to efficiently utilize channel capacity for next transmission, but it brings with it the stale CSI problem due to the frequently channel fluctuations. As its objective, this thesis focuses on mitigating the vicious effect of stale CSI by proposing a novel framework that incorporate AMC with layered transmission through Superposition Coding (SPC) is introduced. A layered multi-step finite-state Markov chain model (FSMC) is developed under this framework, to effectively assist the system in selecting the optimal modulation and coding scheme as well as the power allocated for each layer in every multi-resolution unicast transmission. Extensive simulations are conducted to verify the proposed framework and compare its performance with other counterparts. The effects of changing key parameters, such as the complexity factor and step size, are also investigated to get close to real world performance. Results demonstrate that the proposed framework can achieve better spectrum efficiency than similar counterparts, due to its improved robustness to the stale CSI problem for each multi-resolution modulated transmission, also these show that the performance of two-layer scheme is good enough for layer allocation, without need of more layers.
53

STRUCTURAL AND ELECTROCHEMICAL STUDIES OF THE LI-MN-NI-O AND LI-CO-MN-O PSEUDO-TERNARY SYSTEMS

McCalla, Eric 09 December 2013 (has links)
The improvement of volumetric energy density remains a key area of research to opti-mize Li-ion batteries for applications such as extending the range of electric vehicles. There is still improvement to be made in the energy density in the positive elec-trode materials. The current thesis deals with determining the phase diagrams of the Li-Mn-Ni-O and Li-Co-Mn-O systems in order to better understand the structures and the electrochemistry of these materials. The phase diagrams were made through careful analysis of hundreds of X-ray di raction patterns taken of milligram-scale combinatorial samples. A number of bulk samples were also investigated. The Li-Mn-Ni-O system is of particular interest as avoiding cobalt lowers the cost of the material. However, this system is very complex: there are two large solid-solution regions separated by three two-phase regions as well as two three-phase regions. Comparing quenched and slow cooled samples shows that the system trans-form dramatically when cooled at rates typically used to make commercial materials. The consequences of these results are that much of the system must be avoided in order to guarantee that the materials remain single phase during cooling. This work should therefore impact signi cantly researchers working on composite electrodes. Two new structures were found. The first was Li-Ni-Mn oxide rocksalt structures with vacancies and ordering of manganese which were previously mistakenly identi ed as LixNi2xO2. The other new structure was a layered oxide with metal site vacancies allowing manganese to order on two superlattices. The electrochemistry of both these materials is presented here. Finally, the region where layered-layered composites form during cooling has been determined. These materials were long looked for along the composition line from Li2MnO3 to LiNi0.5Mn0.5O2 and the most significant consequence of the actual locations of the end-members is that one of the structures contains a high concentration of nickel on the lithium layer. Layered-layered nano-composites formed in this system are therefore not ideal positive electrode materials and it will be demonstrated that single-phase layered materials lead to better electrochemistry.
54

Layered Adaptive Modulation and Coding For 4G Wireless Networks

Wei, Zhenhuan 18 January 2011 (has links)
Emerging 4G standards, such as WiMAX and LTE have adopted the proven technique of Adaptive Modulation and Coding (AMC) to dynamically react to channel fluctuations while maintaining bit-error rate targets of the transmission. This scheme makes use of the estimated channel state indication (CSI) to efficiently utilize channel capacity for next transmission, but it brings with it the stale CSI problem due to the frequently channel fluctuations. As its objective, this thesis focuses on mitigating the vicious effect of stale CSI by proposing a novel framework that incorporate AMC with layered transmission through Superposition Coding (SPC) is introduced. A layered multi-step finite-state Markov chain model (FSMC) is developed under this framework, to effectively assist the system in selecting the optimal modulation and coding scheme as well as the power allocated for each layer in every multi-resolution unicast transmission. Extensive simulations are conducted to verify the proposed framework and compare its performance with other counterparts. The effects of changing key parameters, such as the complexity factor and step size, are also investigated to get close to real world performance. Results demonstrate that the proposed framework can achieve better spectrum efficiency than similar counterparts, due to its improved robustness to the stale CSI problem for each multi-resolution modulated transmission, also these show that the performance of two-layer scheme is good enough for layer allocation, without need of more layers.
55

Layered Double Hydroxides: Synthesis, Characterization, and Interaction of Mg-Al Systems with Intercalated Tetracyanonickelate(II)

Brister, Fang Wei 08 1900 (has links)
The square-planar tetracyanonickelate(II) anion was intercalated into 2:1 and 3:1 Mg-Al layered double hydroxide systems (LDHs). In the 2:1 material, the anion holds itself at an angle of about 30° to the layers, whereas in the 3:1 material it lies more or less parallel to the layers. This is confirmed by orientation effects in the infrared spectra of the intercalated materials and by X-ray diffraction (XRD) data. The measured basal spacings for the intercalated LDH hosts are approximately 11 Å for the 2:1 and approximately 8 Å for the 3:1. The IR of the 2:1 material shows a slight splitting in the ν(CN) peak, which is suppressed in that compound's oriented IR spectrum, indicating that at least some of the intercalated anion's polarization is along the z-axis. This effect is not seen in the 3:1 material. A comparison between chloride LDHs and nitrate LDHs was made with respect to intercalation of tetracyanonickelate(II) anions. Both XRD data and atomic absorption spectroscopy (AAS) data of the LDH tetracyanonickelates confirms that there are no significant differences between the products from the two types of starting materials. The presence of a weak ν(NO) peak in the IR spectra of those samples made from nitrate parents indicates the presence of small amounts of residual [NO3]- in those systems. Small amounts of Cl- present in the chloride-derived samples, while perhaps detectable using AAS, would not be detectable in this manner. An attempted synthesis of Mg-Al LDH carbonates starting from reduced Mg and Al was unsuccessful due to pH constraints on hydroxide solubility in the solvent system used (water). The pH required to precipitate Al(OH)3 in the system was too high to allow precipitation of Mg(OH)2. Consequently, we found it impossible to have both of the required metal hydroxides present simultaneously in the system. An additional synthesis using a halogen as an oxidizing agent also failed to produce material of any characterizable quality.
56

Electrochemical Synthesis and Applications of Layered Double Hydroxides and Derivatives

Kahl, Michael S. 08 1900 (has links)
Layered double hydroxides (LDH) are a class of anionic clay with alternating layers of positive and negative charge. A metal hydroxide layer with divalent and trivalent metals with a positive charge is complemented by an interlayer region containing anions and water with a negative charge. The anions can be exchanged under favorable conditions. Hydrotalcite (Mg6Al2(OH)16[CO3]·4H2O) and other variations are naturally occurring minerals. Synthetic LDH can be prepared as a powder or film by numerous methods. Synthetic LDH is used in electrode materials, adsorbents, nuclear waste treatment, drug delivery systems, water treatment, corrosion protection coatings, and catalysis. In this dissertation Zn-Al-NO3 derivatives of zaccagnaite (Zn4Al2(OH)12[CO3]·3H2O) are electrochemically synthesized as films and applied to sensing and corrosion resistance applications. First, Zn-Al-NO3 LDH was potentiostatically electrosynthesized on glassy carbon substrates and applied to the electrochemical detection of gallic acid and caffeic acid in aqueous solutions. The modified electrode was then applied to the detection of gallic acid in green tea samples. The focus of the work shifts to corrosion protection of stainless steel. Modified zaccagnaite films were electrodeposited onto stainless steel in multiples layers to reduce defects caused by drying of the films. The films were deposited using a step potential method. The corrosion resistance of the films in a marine environment was investigated while immersed in 3.5 wt.% NaCl environments. Next modified zaccagnaite films were potentiostatically electrodeposited onto stainless steel followed by a hydrophobization reaction with palmitic acid in order to prepare superhydrophobic (>150° contact angle) surfaces. Each parameter of the film synthesis was optimized to produce a surface with the highest possible contact angle. The fifth chapter examines the corrosion resistance of the optimized superhydrophobic film and a hydrophobic film. The hydrophobic film is prepared using the same procedure as the superhydrophobic film except for a difference in electrodeposition potential. The corrosion resistance of these films is investigated in a simulated marine environment (3.5 wt.% NaCl) for short and extended durations. The last chapter summarizes the previous chapters and suggests future directions for this work.
57

Automated Loading and Unloading of the Stratasys FDM 1600 Rapid Prototyping System

Brockmeier, Oivind 28 March 2000 (has links)
Rapid prototyping systems have advanced significantly with respect to material capabilities, fabrication speed, and surface quality. However, build jobs are still manually activated one at a time. The result is non-productive machine time whenever an operator is not at hand to make a job changeover. A low-cost auxiliary system, named Continuous Layered Manufacturing (CLM), has been developed to automatically load and unload the FDM 1600 rapid prototyping system (Stratasys, Inc.). The modifications made to the FDM 1600 system are minimal. The door to the FDM 1600 build chamber is removed, and the .SML build files that are used to drive the FDM 1600 are modified at both ends to facilitate synchronized operation between the two systems. The CLM system is capable of running three consecutive build jobs without operator intervention. As long as an operator removes finished build jobs, and adds new build trays before at most every three build jobs, the FDM can operate near indefinitely. The impact of the CLM system on the productivity of the FDM 1600 rapid prototyping system is demonstrated by the expected reduction from the customary eight weeks down to a future three and one-half weeks required to complete the typical forty build jobs during a semester in the course ME 4644 Introduction to Rapid Prototyping at Virginia Tech. / Master of Science
58

Studies for Design of Layered Ceramic Armour Inspired by Seashells

Akella, Kiran January 2015 (has links) (PDF)
Pearly layers in seashells, also known as nacreous layers, are reported to be three orders of magnitude tougher than their primary constituent, aragonite. Their high toughness is attributed to a particular structure of alternating layers of natural ceramic and polymer materials. This work tries to emulate it using engineering materials. The thickness, strength, and stiffness of the ceramic layer; the thickness, stiffness, strength, and toughness of the polymer interface layer; and the number of layers are the factors that contribute to different degrees. Furthermore, understanding the relative contribution of different toughening mechanisms in nacre would enable identification of key parameters to design tough engineered ceramics. As a step towards that, in this thesis, layered ceramic beams replicating nacre were studied analytically, computationally, and experimentally. The insights and findings from these studies were then used to develop a new method to make tough layered ceramics mimicking nacre. Subsequently, the use of layered ceramics for armour applications was evaluated. Based on analytical numerical and experimental studies, we observed that the strength of the layers is a key factor to replicate the high toughness of nacre in engineered ceramics. We also demonstrated that, crack deflection and bridging observed in nacre in studies elsewhere, occur due to the high strength of platelets. Based on these findings, the new method developed in this study uses green alumina-based ceramic tapes stacked with screen printed stripes of graphite. During sintering, graphite oxidizes leaving empty channels in the stack. These channels were filled with tough interface materials afterwards. As a result, a ceramic- polymer composite with more than 2-fold increase in toughness was developed. Subsequently, we evaluated layered ceramics for armour applications based on numerical analysis validated with experiments. Consistent to the trends in literature, we observed that layers degrade the resistance to ballistic impact. However, improved energy absorption is demonstrated in layered ceramics. These conflicting dual trends were not presented and quantified in any earlier studies conducted elsewhere. Another new observation not documented earlier is the effect of interface strength. Using an interface material of sufficient strength, penetration resistance of layered ceramics can be improved beyond monolithic ceramics. Using these findings, new layered ceramic armour can be designed that is cost- effective and better performing than monolithic ceramics.
59

Calculation of global properties of a multi-layered solid wood structure using Finite Element Analysis

Zafra-Camón, Guillermo January 2015 (has links)
Finite Element Method (FEM) is a powerful numerical tool which, combined with the fast development of Computer Science in the lastdecades, had made possible to perform mechanical analysis of a widerange of bodies and boundary conditions. However, the complexity of some cases may turn the calculationprocess too slow and sometimes even unaffordable for most computers. This work aims to simplify an intricate system of layers withdifferent geometries and material properties by approximating itthrough a homogeneous material, with unique mechanical parameters.Besides the Finite Element analysis, a theoretical model is created, in order to understand the basis of the problem, and, as a firstapproach, check whether the assumptions made in the FEM model areacceptable or not. This work intends to make a small contribution to the understandingof the mechanical behaviour of the Vasa vessel, which will eventuallylead to the design of a new support structure for the ship. The preservation of the Vasa is a priority for the Swedish Property Board, as it is one of the main monuments of Sweden.
60

A LAYERED APPROACH TO PACKET BASED INSTRUMENTATION

Jones, Sid, Chalfant, Tim 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / The telemetry industry must take advantage of the constantly increasing capability and decreasing per unit costs of network technology. The most effective way to do this is to adopt the layered reference model approach that is being used throughout the telecommunications industry. With a layered reference model, the interfaces between the layers are defined. As a layer is changed, the new layer must adhere to the same interfaces as the previous one. This approach easily allows new technology insertion in key areas without affecting the rest of the system. The Navy and the Air Force see this approach as a key component of acquisition reform and have established a comprehensive road map to achieve this goal.

Page generated in 0.042 seconds