• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 281
  • 98
  • 46
  • 38
  • 15
  • 10
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 624
  • 144
  • 101
  • 88
  • 61
  • 60
  • 57
  • 55
  • 53
  • 42
  • 40
  • 38
  • 32
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Flow of a Two-Layered Viscous Fluid Towards a Line Sink

Reid, Thomas Lewis 10 1900 (has links)
<p> The thesis contains an experimental verification of a paper by D. G. Huber dealing with a solution to the problem of the irrotational motion of two fluid strata towards a line sink. Friction was assumed negligible in the theoretical analysis and, as a result, the experimental values deviated somewhat from the theoretical expectations. The largest deviation occurred at the point of incipient drawdown where the theoretical and experimental values of the Froude number differed by 48%. The trends obtained in the experiment verify the theoretical solution. The effect of viscosity at the point of incipient drawdown for two different interface height to width ratios was determined.</p> <p> The work of Harleman et al. in submerged sluice control was extended and showed that the Froude number of the lower layer at the point of incipient drawdown with high rates of flow was much larger than expected. The reason for the change was explained using the Khafagi-Hammad relationships.</p> / Thesis / Master of Engineering (MEngr)
42

Bio-Functionalized Clay Nanoparticles for Wound Healing Applications

Vaiana, Christopher Anthony 11 July 2011 (has links)
No description available.
43

Failure mechanism of a brittle layered material

Wang, Rentong 21 June 2004 (has links)
No description available.
44

Triaxial Behaviour of Layered Soil at Small Strain Level

Liu, Wei 10 September 2017 (has links)
The purpose of this study was to analyze the anisotropic behaviour of layered soil at small strain level. This thesis comprised experimental, numerical, and theoretical aspects and provided an insight to the concept of the ‘equivalent’ homogeneous cross-anisotropic material indicating that the layered soil can be replaced by an equivalent transversely isotropic material under certain conditions. In the experimental program, this study extended Vaid’s work (1971) to conduct K0-compression tests in a rigid triaxial cell with a flexible lateral boundary for the determination of the K0-value of normally consolidated soil. The error induced by the compliance of the cell-water system that always existed in the previous study was successively eliminated by attaching a compliance correction system (i.e., GDS controller) to the triaxial cell. Three stress path tests (i.e., the K0-compression test, the plane strain compression test, and the hydrostatic pressure compression test) were conducted consecutively in a rigid triaxial cell for a layered soil specimen to determine the elastic cross-anisotropic properties of the equivalent homogeneous material. The applicability of the proposed approach was demonstrated by conducting the tests on two types of soil (i.e., the homogeneous soil and the layered soil). A three-parameter constitutive equation for describing the soil’s cross-anisotropic elastic behaviour was modified in a basic FEM program. Based on the material properties determined by the experimental study as an input, numerical simulations (i.e., the numerical K0-test) using FEM were conducted to compare numerical results with the test results. In the theoretical part, this study made use of the Reuss and the Voigt approximations and proposed a simple, yet physically meaningful, approach to determine the equivalent cross-anisotropic elastic properties of a multilayered medium. To simplify the exposition, a multilayered medium with two constituent materials that were both isotropic was examined. / Thesis / Master of Applied Science (MASc)
45

Polymer Aluminophosphate Mixed Matrix Membranes for Gas Separations

Vaughan, Benjamin Ray 24 April 2007 (has links)
It is well known that clays dispersed in a polymer matrix decrease the permeability of all gases through that membrane. Our objective was to explore the effects on transport when a microporous layered aluminophosphate was added to a polymer matrix. The clay like layered aluminophosphate used contains sheets with 8MR ring openings in the size range of 3-4 Ã . The molecular level dispersion of this material into a polymer matrix is theorized to increase selectivity by molecular sieving. A previous study performed in our laboratory showed an increase in He/CH4 selectivity when this aluminophosphate (8MR-AlPO) was dispersed in a fluorinated polyimide. The increase in selectivity was explained as size sieving by the aluminophosphate sheets where small gas species can pass through the microstructure and large gas species have to take a tortuous path around the sheets. We performed several studies with different polymer materials in the attempt to make composite membranes that corroborated the previously seen increases in gas selectivity. In some cases different surfactants were used to swell 8MR-AlPO. In the first set of studies the methods used to produce the fluorinated polyimide composites were repeated using polydimethyl siloxane (PDMS), a copolymer of a fluorinated polyimide and PDMS, polysulfone, Matrimid, and cellulose acetate as the matrix materials. In general gas permeation studies of these materials showed an overall decrease in permeability with increasing addition of 8MR-AlPO but no substantial increase in selectivity. In an attempt to increase the chances of exfoliating and dispersing the layered aluminophosphate, an in-situ method using poly(etherimide) (PEI) was polymerized in the presence of 8MR-AlPO was employed. Mixed matrix membranes of PEI with 5wt% 8MR-AlPO were successfully fabricated and the transport properties measured. Microscopy revealed that the composites made with the 8MR-AlPO treated with a reactive surfactant showed better dispersion than those treated with the nonreactive surfactants. The permeability of gases changed very little as the result of adding 8MR-AlPO to PEI and no substantial increase in selectivity was observed. Finally, we incorporated a similar layered aluminophosphate with larger 12MR (6-7Ã ) openings into polysulfone. These composites showed barrier behavior but no increases in selectivity. / Ph. D.
46

Integration of Ferroelectric Materials into High Density Non-Volatile Random Access Memories

Tirumala, Sridhar 08 September 2000 (has links)
The characteristic polarization response of a ferroelectric material to an applied electric field enables a binary state device in the form of a thin film ferroelectric capacitor that can be used to store digital information. In a high density memory the capacitor is placed on the top of a poly-silicon plug which is connected to the drain of a transistor. Such a configuration poses constraints on the processing conditions of the ferroelectric capacitor in addition to the already existing reliability issues of a ferroelectric capacitor. The current research is an attempt to integrate the ferroelectric capacitor directly into a high density memory structure. Pb<sub>1.1</sub>Zr<sub>0.53</sub>Ti<sub>0.47</sub>O₃ (PZT) and SrBi₂Ta₂O₉ (SBT) are two most promising materials for ferroelectric memory applications. PZT has excellent ferroelectric properties with wide operating temperature range. However, PZT exhibits a considerable loss of switchable polarization with cumulative switching cycles. This phenomenon is known as fatigue and is one of the critical problems affecting the life time of ferroelectric memories. In this research, Ir based electrodes are shown to improve fatigue characteristics of PZT based capacitors not only by enhancing a homogenous growth of perovskite phase of PZT but also by lowering the entrapment of oxygen vacancies at the interface. These Ir electrodes also acted as diffusion barriers for silicon, oxygen and lead. Additionally, Ir electrodes were found to be chemically stable at the processing temperatures of PZT capacitors. These features of Ir based electrodes could help in realization of a practical PZT based high density non volatile random access memories. SBT is an another promising ferroelectric material for ferroelectric memory applications. While SBT has a fatigue free nature, it has a very high processing temperature (>800 °C). Such a high processing temperature limits the choice of electrodes that could be used to integrate the ferroelectric capacitor into the high density memory structure. In this research, an attempt is made to lower the processing temperature and suitable electrodes are chosen accordingly, to enable the integration of SBT based capacitors into high density memories. Lowering the processing temperature was obtained by growing a-b oriented SBT crystallites rather than c-axis oriented crystallites. Additionally, reliability (degradation) and yield of SBT thin film capacitors was found to be correlated to the amount of segregated bismuth oxide in the films. Elimination of secondary phase bismuth oxide was found to result in dramatic improvement in the reproducibility of SBT thin films with a processing temperature close to 750 °C. PtRh based electrodes were found to be quite suitable for integrating SBT capacitors into high density memory structures. These electrodes could withstand a processing temperature of 750 °C while preventing the interdiffusion of silicon, oxygen and bismuth. A solid solution of SBT and Bi₃TiNbO₉ (BTN) is made which reduced the processing temperature of the capacitor material from 750 °C to 650 °C while retaining the excellent fatigue and retention characteristics of SBT. / Ph. D.
47

Localized Effects of Piezopolymer Devices on the Dynamics of Inflatable Space-Based Structures

Williams, Robert Brett 25 August 2000 (has links)
Inflatable space-based devices have become popular over the past three decades, as they offer minimized launch-mass and launch-volume. Since some satellites have mirror sections over fifty feet in diameter and struts with lengths over ninety feet, inflation while in orbit has become a necessary procedure. Once inflated, these space structures are subject to two types of vibrations: those induced mechanically by guidance systems and space debris and those induced thermally from variable amounts of direct sunlight as they orbit about earth. Controlling vibrations of spaced-based structures is critical to ensuring optimal performance. The focus of this research is derived from an Air Force program to develop and model an active control system using smart materials to suppress the vibrations of inflatable communication satellites. When small piezoceramic devices are attached to an aluminum or steel structure, the effects of the piezo on the dynamic properties of the host are typically ignored. However, the inflatable satellites of interest to this project are manufactured from Kapton®, a thin, light polyimide film. Therefore, even a piezopolymer film actuator, such as PVDF, could greatly change the mass and stiffness values in the area under and around the patch, altering the dynamic behavior of the satellite. Thin-walled pressure vessel theory was employed to assess the state of stress at any location on an inflated torus. A flat, rectangular coupon was selected at a general point on the structure and modeled as a membrane. The equation of motion for this membrane with clamped edges was derived and a closed-form solution for the natural frequencies and mode shapes was presented. The Rayleigh-Ritz and finite element methods were then seen to numerically approximate the natural frequencies and mode shapes for the bare membrane with a high degree of accuracy. A passive PVDF patch was then attached to the base membrane and the equation of motion derived using an energy approach. Since a closed-form solution was not readily available, the Rayleigh-Ritz and finite element methods were again employed to obtain approximate results that agreed remarkably well. Trends in natural frequencies for various patch areas and thicknesses were explored. It was shown, that membrane theory represented the added mass of the patch but was unable to account for the added stiffness of the PVDF attachment. Traditional membrane theory was also unable to model an active PVDF patch as a sensor for out of plane vibrations, but the ability of the patch to alter the tension in the base layer was predicted. / Master of Science
48

Walls || Memory

Morel, Caroline Monique 29 June 2015 (has links)
We are all influenced by memories when we pursue acts of creation. However, these reminiscences are often fleeting and elusive; they rarely are formalized, nor are they explicit in the final artifact. This work is based on a concrete representation of a childhood memory: the map of a city. The thesis explores ways to design and construct a place where others could, in turn, create their own memory. This place is located in Alexandria, VA, on South Fairfax Drive. It is an integrated mixed use program (Retails on the lower and ground levels, and residences on the 2 upper levels). This experimentation invites further questions. How strictly should the concrete representation of the memory guide the design? What are the qualities of the spaces resulting of such rules? How to engage in the tension between the explicit memory's realm and the contemporary world? How to express their respective materiality? |From| Memory of Walls |to| Walls of Memory / Master of Architecture
49

Layered Double Hydroxides and the Origins of Life on Earth

Brister, Brian 05 1900 (has links)
A brief introduction to the current state of research in the Origins of Life field is given in Part I of this work. Part II covers original research performed by the author and co-workers. Layered Double Hydroxide (LDH) systems are anion-exchanging clays that have the general formula M(II)xM(III)(OH)(2x+2)Y, where M(II) and M(III) are any divalent and trivalent metals, respectively. Y can be nearly any anion, although modern naturally occuring LDH systems incorporate carbonate (CO32-), chloride (Cl-), or sulfate (SO42-) anions. Intercalated cobalticyanide anion shows a small yet observable deviation from local Oh symmetry causing small differences between its oriented and non-oriented infrared spectra. Nitroprusside is shown to intercalate into 2:1 Mg:Al LDH with decomposition to form intercalated ferrocyanide and nitrosyl groups of an unidentified nature. The [Ru(CN)6]4- anion is shown to intercalate into layered double hydroxides in the same manner as other hexacyano anions, such as ferrocyanide and cobalticyanide, with its three-fold rotational axis perpendicular to the hydroxide sheets. The square-planar tetracyano-nickelate(II), -palladate(II), and platinate(II) anions were intercalated into both 2:1 and 3:1 Mg:Al layered double hydroxides (LDH). The basal spacings in the 2:1 hosts are approximately 11 Å, indicating that the anions are inclined approximately 75 degrees relative to the hydroxide layers, while in the 3:1 hosts the square-planar anions have enough space to lie more nearly parallel to the LDH cation layers, giving basal spacings of approximately 8 Å. It has been found that the LDH Mg2Al(OH)6Cl catalyzes the self-addition of cyanide, to give in a one-pot reaction at low concentrations an increased yield of diaminomaleonitrile and in addition, at higher ($0.1M) concentrations, a purple-pink material that adheres to the LDH. We are investigating whether this reaction also occurs with hydrotalcite itself, what is the minimum effective concentration of cyanide, and what can be learned about the products and how they compare with those reported at high HCN concentrations in the absence of catalyst.
50

Layered Double Hydroxides: Morphology, Interlayer Anion, and the Origins of Life

Halcom-Yarberry, Faith Marie 12 1900 (has links)
The preparation of layered double hydroxides via co-precipitation of a divalent/trivalent metal solution against a base results in 1 mm LDH particles with a disorganized metal lattice. Research was performed to address these morphological issues using techniques such as Ostwald ripening and precipitation via aluminate. Another interesting issue in layered double hydroxide materials is the uptake and orientation of anions into the interlayer. Questions about iron cyanide interlayer anions have been posed. Fourier transform infared spectroscopy and powder x-ray diffraction have been used to investigate these topics. It was found that factors such as orientation, anion charge, and anion structure depended on the divalent/trivalent metal ratio of the hydroxide layer and reactivity time. The cyanide self-addition reaction is an important reaction of classical prebiotic chemistry. This reaction has been shown to give rise to amino acids, purines and pyrimidines. At cyanide concentrations similar to that expected on the early earth, hydrolysis to formamide rather than self-addition occurs. One theory to alleviate this side reaction is the use of minerals or clays that are thought to concentrate and catalyze prebiotics of interest. Layered double hydroxides have been studied as a catalyst for this reaction.

Page generated in 0.0347 seconds