• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Patterns and drivers of recent peatland carbon accumulation in northeastern Canada

Sanderson, Nicole Katherine January 2016 (has links)
Northern peatlands are an important component of the global carbon (C) cycle and have been a net sink of atmospheric C during the Holocene. Under current climate warming conditions, the future sink-source balance of these peatlands is uncertain. In particular, peatlands near the southern limit of permafrost are likely to be sensitive to changes in topography as well as climate. In order to predict how the sink-source balance may change, this thesis focuses on determining the generality of observed patterns of C accumulation in Northeastern Canada. The methodological approach in this thesis is unique. A total of 30 cores were taken from 9 peatlands located in 3 ecoclimatic regions along the North Shore of the Gulf of St Lawrence. This replication of records allows for climate-scale (allogenic) signals to be separated from the internal or local factors (autogenic), and for statistical testing of differences between regions and within sites over time. Trends in carbon accumulation rates (CAR) were analysed on three levels: (1) within individual sites along a hydrological or microtopography gradient, (2) between overall regions located along a climatic or permafrost gradient, and (3) over time on a multi-centennial scale. Lead-210 (210Pb) dating was used throughout the analysis to increase temporal resolution for the last 150-200 years of C accumulation. The method was thoroughly tested from preparation to analysis and found to produce reliable results, comparable with other dating methods. These dates were then used to develop combined age-depth models for longer-term context. Replicated records of 210Pb inventories and fallout rates were also used to address questions of deposition patterns and post-depositional mobility in peat profiles. Total inventories decreased with water table depth, with lichen hummocks having significantly higher inventories. One site also received significantly higher 210Pb deposition than the other two, as it is more sheltered from the Gulf influence. Recent carbon accumulation rates for the 150-year period for all microforms across all regions was 62.1 ± 4.4 g C m-2 a-1, and were highest for Sphagnum hummocks (79.9 ± 8.9 g C m-2 a-1) and lowest for dry lichen hummocks (42.7 ± 6.2 g C m-2 a-1). Patterns and trends at this scale were mainly driven by autogenic processes, including incomplete decomposition in the acrotelm peat. Models of peat accumulation related to acrotelm thickness were found to be overly simplistic, as carbon accumulation for intermediate microforms showed large natural variability driven by changing ecohydrological feedbacks, in part due to permafrost degradation at one of the sites. Over a multi-centennial scale, carbon accumulation rates were driven by a combination of climatic changes and ecohydrological feedbacks due to shifts in the microform configuration in response to permafrost degradation. Changes in carbon accumulation rates were detected and coincided with Little Ice Age temperature/solar minima (including the Spörer, Maunder and Dalton Minima), permafrost degradation since the 1950s, and recent climatic changes in the mid-1990s. Snow cover and exposure of sites and microforms were found to play an important role, rather than solely climatic variables. Rapid Sphagnum re-establishment in post-permafrost degraded features and increasing temperatures meant that carbon accumulation was highest for the northernmost site in the transect. Age-depth models using a combination of lead-210 and radiocarbon dates allowed for the calculation of carbon accumulation rates at a decadal resolution. While peat carbon sequestration is projected to increase in northern regions, the fate of peatland C near the southern limit of permafrost is complex. Future studies seeking to interpret recent changes should include multiple cores and consider both regional climatic and local ecohydrological drivers.
2

The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, Canada

Eickmeyer, David 03 September 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.
3

The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, Canada

Eickmeyer, David January 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.

Page generated in 0.0883 seconds