• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mercury accumulation in lake sediments on different time scales – the influence of algal primary production / Kvicksilverackumulation i sjösediment över olika tidsskalor – effekten av primärproduktionen av alger

Rebotzke, Anne January 2023 (has links)
The aim of this work is to test the proposed approach of algal scavenging as a driver of sediment mercury (Hg) on different time scales and to gain a better understanding of the mechanisms of Hg accumulation in lake sediments. A 3000-year sediment record from Nylandssjön in northern Sweden was analysed for this purpose, as well as a 20-year sediment record from the seasonal sediment traps of this lake. The diatom proxy biogenic silica (bSi) was determined by Fourier transform infrared spectroscopy (FTIRS) and chlorophyll-a (Chl-a) as a proxy for primary productivity by non-destructive visible near-infrared reflectance spectroscopy (VNIRS). Silica, normalised to minerogenic matter by aluminium (Si/Al) as an indirect diatom proxy and other geochemical parameters were analysed by the non-destructive method of X-ray fluorescence spectroscopy (XRF). The Hg content in the sediment was determined using the the thermal decomposition atomic absorption spectrophotometers (TD-AAS) method. Over the different time scales, organic matter (OM) is an important control factor for Hg, which in turn was strongly associated with primary productivity. Hg was normalised against OM by determining the Hg/LOI or Hg/C ratios. No positive correlation was found between the normalised Hg ratios and the proxies of primary productivity (bSi, Chl-a and Si/Al). Negative correlations between OM and minerogenic elements coinciding with human-induced erosion events and increasing Hg levels in the sediment were found. This is true, both for the long-term record in the sediment cores and the high-resolution data from the sediment traps. Furthermore, in the seasonal sediment record of the sediment traps, in-lake processes like lake turnover in spring and autumn could be linked to precipitation of iron oxyhydroxides (FeOOH) and increasing sedimentary Hg. This may be supported by the parallel sediment accumulation of other metals like nickel (Ni) and zinc (Zn) at the time of the lake turnover.
2

The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, Canada

Eickmeyer, David 03 September 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.
3

The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, Canada

Eickmeyer, David January 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.

Page generated in 0.087 seconds