• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 398
  • 79
  • 38
  • 32
  • 21
  • 19
  • 12
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 751
  • 87
  • 80
  • 78
  • 77
  • 72
  • 65
  • 58
  • 50
  • 47
  • 46
  • 45
  • 40
  • 39
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

All-angle negative refraction of photonic and polaritonic waves in three-dimensionally periodic structures

Rose, Alec Daniel January 2009 (has links)
Thesis advisor: Krzysztof Kempa / Though nature provides a plethora of materials to work with, their properties are very much restricted, forcing severe limitations on the devices that are built from them. A huge portion of current technology stands to be significantly advanced and even revolutionized by the emergence of a new class of “configurable” materials. This class, generally referred to as metamaterials, has become more feasible than ever due to advancements in nanotechnology and fabrication techniques. Notable among nature’s limitations is an ever-positive index of refraction. This barrier has only recently been broken, and the known paths to negative refraction are few and limited. This paper introduces two distinct three-dimensional crystals capable of all-angle negative refraction. One uses the familiar photonic band, while the other is the first of its kind to rely on polaritonic waves. Their mode structures are examined and a set of parameters are chosen at which a negative effective index of refraction can be harnessed for unrestricted sub-wavelength lensing, demonstrated via numerical simulation. This work is expected to enable experimental observation of polaritonic negative refraction and sub-wavelength lensing at microwave frequencies. / Thesis (BS) — Boston College, 2009. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: College Honors Program. / Discipline: Physics.
172

Espectroscopia não linear em cristais fluoretos e polianilina / Nonlinear spectroscopic characterization in fluoride crystals and polyaniline

Pilla, Viviane 02 April 2001 (has links)
Nesta trabalho estudamos o efeito de refração não linear em cristais fluoretos dopados com Cr+3 e polímeros. Tais cristais fluoretos têm recebido bastante atenção dos pesquisadores por apresentarem um espectro de emissão de banda larga e ação laser sintonizável na região de aproximadamente 780-1010 nm. Aplicando a técnica de lente Térmica (LT), realizamos um estudo quantitativo do comportamento da eficiência quântica de emissão, na presença dos processos de supressão térmica da fluorescência e conversão ascendente. Apresentamos um novo método de aplicação da técnica de LT, que possibilita a determinação da eficiência quântica em função do parâmetro de saturação S (S= IM/Is, em que IM é a intensidade média incidente no material e Is a intensidade de saturação). A partir desses resultados é possível determinar o parâmetro de conversão ascendente Auger (γ), desde que se conheça a população total do Cr+3 ( N0) e o tempo de vida de emissão τ(τ-1=τR-1+τNR-1) do material investigado. Este método é apresentado para LiSAF dopados com 1% e 7% de Cr+3 , e LiSGaF 4.7% de dopagem de Cr+3, excitados em regime cw sob 15°C. No caso dos polímeros, estudamos a caracterização das propriedades não lineares (eletrônica e térmica) das amostras de polianilina (PANI) dopadas e não-dopadas com H2SO4 na forma plastificada e dissolvida em dimetil sulfóxido (DMSO). Utilizamos para isso as técnicas de LT (cw) e Z-scan (cw e pulso de 70 ps). As medidas foram realizadas em função da concentração de PANI e temperatura. Utilizando um laser de Nd:YAG com um trem de pulsos, realizamos um estudo dinâmico da não linearidade em função da concentração da PANI. Dessa forma pudemos discriminar o efeito eletrônico do efeito térmico, determinando o índice de refração não linear (n2f) um índice térmico (n2cth) que está relacionado ao parâmetro térmico dn/dT (variação do coeficiente óptico com a temperatura). / In this work we studied the effect of nonlinear refraction in Cr+3 doped fluoride host crystals and polymers. The fluoride crystals have been attractive due a broad emission bandwidth and a tunable solid-state lasing in the range of approximately 780-1010 nm. Applying the Thermal Lens (TL) technique, we accomplished a quantitative study of the behavior of the quantum efficiency, in the presence of the processes of the fluorescence thermal quenching and upconversion processes. We introduced a new method of application of the TL technique, which makes possible the determination of the quantum efficiency as a function of the saturation parameter S (S= IM/Is, where IM is the medium intensity in the material and Is, the saturation intensity). Based on those results it is possible to determine the Auger upconversion parameter (γ), it one knows the total population of Cr+3 (N0) and the emission lifetime τ(τ-1=τR-1+τNR-1) of the investigated material. This method is presented for 1% and 7% Cr+3 doped LiSAF, and 4.7% of Cr+3 doped LiSGaF, upon excitation in the cw regime at 15°C. In the case of the polymers, we studied the nonlinear properties (electronics and thermal nonlinearities) of the polyaniline samples (PANI) doped and nondoped with H2SO4 in the film form and dissolved in dimethylsulfoxide. We used the LT (cw) and Z-scan (cw and pulse of 70 ps) techniques. The measurements were accomplished as a function of the concentration of PANI and temperature. Using a laser of Nd:YAG with pulse trains, we accomplished the dynamic behavior of the optical nonlinearity as a function of the PANI concentration. By this method we were able to discriminate between electronic and thermal lensing nonlinearities, and allows the determination of the nonlinear refractive index (n2f) and thermal index (n2cth) that is related to the thermal parameter dn/dT (temperature coefficient of refractive index).
173

The Use of Optical Metrology in Active Positioning of a Lens

Ji, Zheng 08 1900 (has links)
Precisely positioned optical lenses are currently required for many highly repetitive mechanics and applications. Thus the need for micron-scale repetition between opto-mechanical units is evident, especially in industrial manufacturing and medical breakthroughs. In this thesis, a novel optical metrology system is proposed, designed, and built whose purpose is to precisely locate the center of a mechanical fixture and then to assemble a plano-convex optical lens into the located position of the fixture. Center location specifications up to ±3 µm decenter and ±0.001° tilting accuracy are required. Nine precisely positioned lenses and fixtures were built with eight units passing the requirements with a repetitive standard deviation of ±0.15 µm or less. The assembled units show satisfactory results.
174

Atomic Force Microscopy Measurement of the Elastic Properties of the Lens

Ziebarth, Noel Marysa 18 December 2008 (has links)
The goal of this project was to develop techniques and instrumentation to measure the elastic properties of the lens and lens capsule in situ and their changes with age using Atomic Force Microscopy (AFM). The studies include the construction, characterization, and calibration of laboratory-based Atomic Force Microscope (AFM) to measure mechanical properties of ophthalmic tissues. Atomic Force Microscopy is a nanoscale imaging technique that has been applied to mechanical property measurement through nanoindentation. Young's modulus of elasticity is determined by monitoring the cantilever deflections when it contacts the sample. The studies also include the development of tissue preparation techniques to enable measurement of the lens elasticity using AFM. This study found that lens capsule elasticity decreases with age, outer lens cortex elasticity remains constant with age, and the inner lens cortex is stiffer than the outer lens cortex. The effect of the changing biometry and mechanical properties with age was investigated by developing a mathematical model of accommodation. These changes will be the limiting factor to accommodative amplitude. Changes in lens capsule mechanical properties will affect the maximal accommodative amplitude in older eyes.
175

A multi-prism lens for hard X-Rays

Cederström, Björn January 2002 (has links)
This thesis describes a new type of refractive lens for hardx-rays. It is shown that a linear array of prisms, slightlyinclined with respect to the optical axis, will form a linefocus at a certain distance from the lens. Hence, the namemulti-prism lens. These lenses are free from sphericalaberration and are similar to planar parabolic compoundrefractive lenses in terms of performance. However, theydistinguish themselves in that only planar surfaces need to befabricated. A special feature is that the focal length can beeasily varied by adjusting the inclination angle. Theoretical calculations, based on geometrical and physicaloptics, are used to characterize the lenses. Aberrations arediscussed, as well as the sensitivity to fabricationimperfections, and insufficient flatness is identified as apotential problem. Ray-tracing is used to test theapproximations and assumptions used in the theory. Applicationsin x-ray microscopy and mammography are discussed. Lenses have been made of beryllium, silicon, epoxy anddiamond using different methods. Results from measurements ofsurface roughness and figure error show that the imperfectionsof the silicon and epoxy lenses should have a small impact,while the beryllium lenses should suffer from strongscattering. Experiments were performed at the EuropeanSynchrotron Radiation Facility and sub-µm focal linewidths, close to theoretical expectations, were measured forsilicon and epoxy lenses at 30 keV and 14 keV, respectively.Insertion gains up to 40 were reached. Two crossed lenses wereused to obtain focusing in two dimensions and a point focus.The smallest measured focal spot size was 1.0 µm by 5 .4µm, and an insertion gain exceeding 100 was achieved usingepoxy lenses. The diamond lenses suffered from voids in the materialformed in the chemical vapor deposition process, butnevertheless provided focal lines less than 2 µm in width,albeit at at relatively low insertion gain of 13. Due to theirexcellent thermal properties, these lenses are put forward ascandidates for optics at the next generationultra-high-intensity synchrotron beams and x-ray free electronlasers. Keywords:x-ray, optics, refractive, lens, mammography,synchrotron. / QC 20100524
176

Reconfigurable Transmitarray Antennas

Lau, Jonathan Yun 31 August 2012 (has links)
Transmitarrays have been shown to be viable architectures for achieving high-directivity reconfigurable apertures. The existing work on reconfigurable transmitarrays is sparse, with only a few experimental demonstrations of reconfigurable implementations. Furthermore, of the designs that have been presented, different approaches have been proposed, but the advantages and drawbacks of these approaches have not been compared. Therefore, in this thesis we present a systematic study of the different approaches to designing reconfigurable transmitarrays, and present designs following these approaches with experimental validation. First, we investigate the distributed-scatterer approach, which is modeled with layers of identical scattering surfaces. We characterize the beamforming capabilities and then present a Method of Moments technique for analyzing and optimizing designs that follow this approach. Then, we present experimental results for a unit cell with varactor-loaded dipoles following this approach. From these results, we demonstrate that the structure thickness following this approach is problematic for beamforming applications. Taking the coupled-resonator approach, we next present a slot-coupled patch design that is significantly thinner and easier to fabricate than designs that follow the first approach. Implementing this design in a fully reconfigurable transmitarray, we demonstrate two-dimensional beamforming. An advantage of this design is that it can also operate as a reflectarray. Next, following the guided-wave approach, we present a transmitarray design that uses a bridged-T phase shifter and proximity-coupled differentially-fed stacked patches. Not only does this design not require vias, it is has a large fractional bandwidth of 10 percent, which is unprecedented in reconfigurable transmitarrays. Implementing this design in a full transmitarray, we experimentally demonstrate reconfigurable two-dimensional beamsteering, as well as shaped-beam synthesis. The main contributions of this thesis are two-fold. First, we thoroughly and systematically compare the transmitarray approaches, which has not been previously done in literature. Secondly, we experimentally demonstrate a reconfigurable array design that achieves better bandwidth, scan angle range, and beam-shaping capability, than existing designs, with reduced fabrication complexity and physical profile.
177

The Morphology of Local Galaxies and the Basis of the Hubble Sequence

Nair, Preethi 25 September 2009 (has links)
The goal of galaxy classification is to understand the physical basis for the wide range in shapes and structures exhibited by galaxies in the local and high redshift universe. We present a catalog of visually classified galaxies from the Sloan Digital Sky Survey with detailed morphological classifications including bars, rings, lenses, tails, warps, dustlanes, arm flocculence and multiplicity (so called ’fine structure’). This thesis explores the importance of galaxy morphology by probing its relationship to physical properties. Our analysis includes an investigation of correlations between fine structures and AGN activity. This sample defines a comprehensive local galaxy sample which we use to study the low redshift universe both qualitatively and quantitatively. We find the stellar mass appears to be a defining characteristic of a galaxy. The break in most correlations of physical properties with morphology is due to a lack of late type, massive disk galaxies. Our analysis of the size-mass relations of galaxies as a function of morphology (T-Type) has revealed many interesting connections. We find the size-mass relation of Sa, Sab, Sb, and Sbc galaxies bifurcates into two families of objects as one moves down the sequence such that the high concentration branch exhibits a similar slope to low concentration early type (E) galaxies suggesting a closer than expected physical (possibly evolutionary) connection between the two populations. We find bar fraction is bimodal with respect to mass (at 3 x 10^10 M) and color (at g - r ∼ 0.55). The dependence is seen to intimately depend on central concentration such that objects below the transition mass with low concentrations have a higher bar fraction than objects above the transition mass which have high bar fractions for high concentration systems. In addition we find the presence of an AGN alters the behavior and abundance of barred/ringed galaxies in the high mass peak such that the bar/ring fractions increase with mass in nonactive galaxies whereas they decrease with mass in active galaxies. AGN fractions are also decreasing in the same mass range possibly implying a positive correlation between fine structure and ring formation.
178

Reconfigurable Transmitarray Antennas

Lau, Jonathan Yun 31 August 2012 (has links)
Transmitarrays have been shown to be viable architectures for achieving high-directivity reconfigurable apertures. The existing work on reconfigurable transmitarrays is sparse, with only a few experimental demonstrations of reconfigurable implementations. Furthermore, of the designs that have been presented, different approaches have been proposed, but the advantages and drawbacks of these approaches have not been compared. Therefore, in this thesis we present a systematic study of the different approaches to designing reconfigurable transmitarrays, and present designs following these approaches with experimental validation. First, we investigate the distributed-scatterer approach, which is modeled with layers of identical scattering surfaces. We characterize the beamforming capabilities and then present a Method of Moments technique for analyzing and optimizing designs that follow this approach. Then, we present experimental results for a unit cell with varactor-loaded dipoles following this approach. From these results, we demonstrate that the structure thickness following this approach is problematic for beamforming applications. Taking the coupled-resonator approach, we next present a slot-coupled patch design that is significantly thinner and easier to fabricate than designs that follow the first approach. Implementing this design in a fully reconfigurable transmitarray, we demonstrate two-dimensional beamforming. An advantage of this design is that it can also operate as a reflectarray. Next, following the guided-wave approach, we present a transmitarray design that uses a bridged-T phase shifter and proximity-coupled differentially-fed stacked patches. Not only does this design not require vias, it is has a large fractional bandwidth of 10 percent, which is unprecedented in reconfigurable transmitarrays. Implementing this design in a full transmitarray, we experimentally demonstrate reconfigurable two-dimensional beamsteering, as well as shaped-beam synthesis. The main contributions of this thesis are two-fold. First, we thoroughly and systematically compare the transmitarray approaches, which has not been previously done in literature. Secondly, we experimentally demonstrate a reconfigurable array design that achieves better bandwidth, scan angle range, and beam-shaping capability, than existing designs, with reduced fabrication complexity and physical profile.
179

The Morphology of Local Galaxies and the Basis of the Hubble Sequence

Nair, Preethi 25 September 2009 (has links)
The goal of galaxy classification is to understand the physical basis for the wide range in shapes and structures exhibited by galaxies in the local and high redshift universe. We present a catalog of visually classified galaxies from the Sloan Digital Sky Survey with detailed morphological classifications including bars, rings, lenses, tails, warps, dustlanes, arm flocculence and multiplicity (so called ’fine structure’). This thesis explores the importance of galaxy morphology by probing its relationship to physical properties. Our analysis includes an investigation of correlations between fine structures and AGN activity. This sample defines a comprehensive local galaxy sample which we use to study the low redshift universe both qualitatively and quantitatively. We find the stellar mass appears to be a defining characteristic of a galaxy. The break in most correlations of physical properties with morphology is due to a lack of late type, massive disk galaxies. Our analysis of the size-mass relations of galaxies as a function of morphology (T-Type) has revealed many interesting connections. We find the size-mass relation of Sa, Sab, Sb, and Sbc galaxies bifurcates into two families of objects as one moves down the sequence such that the high concentration branch exhibits a similar slope to low concentration early type (E) galaxies suggesting a closer than expected physical (possibly evolutionary) connection between the two populations. We find bar fraction is bimodal with respect to mass (at 3 x 10^10 M) and color (at g - r ∼ 0.55). The dependence is seen to intimately depend on central concentration such that objects below the transition mass with low concentrations have a higher bar fraction than objects above the transition mass which have high bar fractions for high concentration systems. In addition we find the presence of an AGN alters the behavior and abundance of barred/ringed galaxies in the high mass peak such that the bar/ring fractions increase with mass in nonactive galaxies whereas they decrease with mass in active galaxies. AGN fractions are also decreasing in the same mass range possibly implying a positive correlation between fine structure and ring formation.
180

Protein Deposition and Bacterial Adhesion to Conventional and Silicone Hydrogel Contact Lens Materials

Nagapatnam Subbaraman, Lakshman January 2009 (has links)
Introduction Contact lenses suffer from the same problems of deposition that other biomaterials exhibit, being rapidly coated with a variety of proteins, lipids and mucins. The first event observed at the interface between a contact lens and tear fluid is protein adsorption. Protein deposits on contact lenses are associated with diminished visual acuity, dryness and discomfort and lid-related inflammatory changes. The aim of this thesis was to determine the quantity and the conformational state of lysozyme deposited on contact lens materials over various time periods and also to determine the clinical relevance of protein deposits on contact lenses. The specific aims of each chapter of this thesis were as follows: • Chapter 4: To determine the total lysozyme deposition on conventional and silicone hydrogel contact lens materials as a function of time by artificially doping lenses with 125I-labeled lysozyme. • Chapter 5: To determine the conformational state of lysozyme deposited on conventional and silicone hydrogel contact lens materials as a function of time using an in vitro model. • Chapter 6: To quantify the total protein, total lysozyme and the conformational state of lysozyme deposited on a novel, lathe-cut silicone hydrogel contact lens material after three-months of wear. • Chapter 7: To determine the relationship between protein deposition and clinical signs & symptoms after one-day wear of etafilcon lenses in a group of symptomatic and asymptomatic lens wearers. • Chapter 8: To determine the influence of individual tear proteins (lysozyme, lactoferrin and albumin) on the adhesion of Gram positive and Gram negative bacteria to conventional and silicone hydrogel contact lens materials. Methods • Chapter 4: Conventional hydrogel FDA group I (polymacon), group II (alphafilcon A and omafilcon A), group IV (etafilcon A and vifilcon A), polymethyl methacrylate and silicone hydrogel lens materials (lotrafilcon A, lotrafilcon B, balafilcon A, galyfilcon A and senofilcon A) were incubated in a lysozyme solution containing 125I-labeled lysozyme for time periods ranging from 1 hour to 28 days. After each time period, lysozyme deposited on contact lens materials was determined using a Gamma Counter. • Chapter 5: Conventional hydrogel FDA groups I, II, IV and silicone hydrogel lens materials were incubated in lysozyme solution for time periods ranging from 1 hour to 28 days. After each time period, the lysozyme deposited on the lenses was extracted and the sample extracts were assessed for lysozyme activity and total lysozyme. • Chapter 6: 24 subjects completed a prospective, bilateral, daily-wear, nine month clinical evaluation in which the subjects were fitted with a novel, custom-made, lathe-cut silicone hydrogel lens material (sifilcon A). After 3 months of wear, the lenses were collected and total protein, total lysozyme and active lysozyme deposition were assessed. • Chapter 7: 30 adapted soft contact lens wearers (16 symptomatic and 14 asymptomatic) were fitted with etafilcon lenses. Objective measures and subjective symptoms were assessed at baseline and after hours 2, 4, 6 and 8. After 2, 4, 6 and 8 hour time points, lenses were collected and total protein, total lysozyme and active lysozyme deposition were assessed. • Chapter 8: Three silicone hydrogel (balafilcon A, lotrafilcon B & senofilcon A) and one conventional hydrogel (etafilcon A) lens materials were coated with lysozyme, lactoferrin and albumin. Uncoated and protein-coated contact lens samples were incubated in a bacterial suspension of Staphylococcus aureus 31 and two strains of Pseudomonas aeruginosa (6294 & 6206). The total counts and the viable counts of the adhered bacteria were assayed. Results • Chapter 4: Lysozyme accumulated rapidly on conventional hydrogel FDA group IV lenses, reached a maximum on day 7 and then plateaued with no further increase. PMMA showed a deposition pattern similar to that seen on lotrafilcon A and lotrafilcon B silicone hydrogel lenses. After 28 days, conventional hydrogel FDA group IV lenses deposited the most lysozyme. • Chapter 5: After 28 days, lysozyme deposited on group IV lenses exhibited the greatest activity. Lysozyme deposited on polymacon, lotrafilcon A and lotrafilcon B exhibited the lowest activity. Lysozyme deposited on omafilcon, galyfilcon, senofilcon, and balafilcon exhibited intermediate activity. • Chapter 6: The total protein recovered from the custom-made lenses was 5.3±2.3 µg/lens and the total lysozyme was 2.4±1.2 µg/lens. The denatured lysozyme found on the lenses was 1.9±1.0 µg/lens and the percentage of lysozyme denatured was 80±10%. • Chapter 7: Correlations between subjective symptoms and protein deposition showed poor correlations for total protein/ lysozyme and any subjective factor, and only weak correlations between dryness and active lysozyme. However, stronger correlations were found between active lysozyme and subjective comfort. • Chapter 8: Different tear proteins had varying effects on the adhesion of bacteria to contact lens materials. Lysozyme deposits on contact lenses increased the adhesion of Gram positive Staphyloccocus aureus 31 strain, while albumin deposits increased the adhesion of both the Gram positive Staphyloccocus aureus and Gram negative Pseudomonas aeruginosa 6206 & 6294 strains. Lactoferrin deposits increased the total counts of both the Gram positive and Gram negative strains, while they reduce the viable counts of the Gram negative strains. Conclusions • Chapter 4: Lysozyme deposition is driven by both the bulk chemistry and also the surface properties of conventional and silicone hydrogel contact lens materials. The surface modification processes or surface-active monomers on silicone hydrogel lens materials also play a significant role in lysozyme deposition. • Chapter 5: The reduction in the activity of lysozyme deposited on contact lens materials is time dependent and the rate of reduction varies between lens materials. This variation in activity recovered from lenses could be due to the differences in surface/ bulk material properties or the location of lysozyme on these lenses. • Chapter 6: Even after three-months of wear, the quantity of protein and the conformational state of lysozyme deposited on these novel lens materials was very similar to that found on similar surface-coated silicone hydrogel lenses after two to four weeks of wear. These results indicate that extended use of the sifilcon A material is not deleterious in terms of the quantity and quality of protein deposited on the lens. • Chapter 7: In addition to investigating the total protein deposited on contact lenses, it is of significant clinical relevance to determine the conformational state of the deposited protein. • Chapter 8: Uncoated silicone hydrogel lens materials bind more Gram positive and Gram negative bacteria than uncoated conventional hydrogel lens materials. Lysozyme deposited on contact lens materials does not possess antibacterial activity against all bacterial strains tested, while lactoferrin possess an antibacterial effect against certain Gram negative strains tested in this study. This thesis has provided hitherto unavailable information on contact lens deposition and its influence on subjective symptoms and bacterial binding. These results suggest that protein deposition has a significant potential to cause problems. Therefore, it is important that practitioners advise their patients regarding the importance of lens disinfection and cleaning and appropriate lens replacement schedules. These results will also be useful for the contact lens industry and the general field of biomaterials research.

Page generated in 0.0293 seconds