• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 783
  • 308
  • 189
  • 68
  • 61
  • 43
  • 28
  • 22
  • 17
  • 16
  • 12
  • 8
  • 6
  • 3
  • 3
  • Tagged with
  • 1668
  • 531
  • 401
  • 316
  • 307
  • 277
  • 228
  • 227
  • 199
  • 173
  • 153
  • 152
  • 127
  • 119
  • 116
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Estimativa do número de afetados e manejo da leucemia mielóide crônica no estado do Rio Grande do Sul, Brasil / Estimated number of individuals with chronic myeloid leukemia and overall survival in Rio Grande do Sul, Brazil

Fassina, Katia Zanotelli January 2003 (has links)
A Leucemia Mielóide Crônica (LMC) é uma doença rara. No entanto, os avanços nas pesquisas básica e clínica nos últimos anos, colocaram a LMC em evidência sendo hoje uma neoplasia maligna potencialmente curável. O diagnóstico e tratamento desta doença são, no entanto, extremamente caros. Não havendo dados sistemáticos nem registros de incidência da LMC no Rio Grande do Sul ou no Brasil, o levantamento de dados baseado em registros dos centros de referência se justifica também para planejar ações em saúde. Entre 1996 e 2000, 276 casos foram diagnosticados. A estimativa de casos novos anuais foi de aproximadamente 0,6:100.000 habitantes, e a idade média no momento do diagnóstico foi 42 anos e 4 meses (±16 anos e 2 meses). Quanto ao tratamento e evolução destes pacientes, dos 257 avaliados, 56 (21,8%) foram submetidos ao transplante alogênico de medula óssea, com taxa de sobrevida em 5 anos de 75% e 27% para as fases crônica e acelerada/blástica, respectivamente. O tempo médio de sobrevida para os 257 pacientes foi de 47,7 meses (IC 43,3 - 52,1). Comparando ao relatado na literatura, encontramos um menor número anual de novos casos e também uma média de idade no diagnóstico mais baixa. Isto poderia ser explicado pela menor referência de idosos a serviços terciários de saúde. Para os pacientes transplantados, os resultados foram semelhantes aos relatados na literatura. / Although rare, the advances made in basic and clinical research throughout the last years have thrown a spotlight on CML. Diagnosis and treatment of CML is of high cost. Since there is no systematic data or information about the incidence of CML in Rio Grande do Sul or Brazil, the data obtained from reference centers serve to estimate the number of CML cases in our state to better plan health actions. Between 1996 and 2000, 276 cases were diagnosed. The annual estimate of new cases was approximately of 0,6:100,000 inhabitants, and the median age at diagnosis was 42 years and 4 months (±16 years and 2 months). The mean overall survival time for the 257 patients was 47,7 months (CI 43,3-52,1). That could be explained by the lack of referral for older patients. Regarding treatment and evolution, of the 257 valuable patients, 56 (21,8%) were submitted to allogeneic BMT with a five-year survival of 75% and 27% for chronic and accelerated/blastic phases, respectively. In conclusion, we found a lower estimated incidence and a lower median age at diagnosis. For the transplanted patients the results were similar to those reported in the literature.
362

Studies on the effects of flavonoids on the proliferation and differentiation of myeloid leukemia cells.

January 1997 (has links)
by Kong Lai Ping, Ada. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 171-189). / ACKNOWLEDGEMENTS --- p.i / ABBREVIATIONS --- p.ii / ABSTRACT --- p.v / TABLE OF CONTENTS --- p.ix / Chapter CHAPTER 1: --- GENERAL INTRODUCTION / Chapter 1.1 --- An Overview on Hematopoiesis --- p.1 / Chapter 1.1.1 --- Development of Hematopoietic Stem Cells and Sites of Hematopoiesis --- p.1 / Chapter 1.1.2 --- Role of Cytokines in the Control of Hematopoiesis --- p.3 / Chapter 1.2 --- Leukemia and Cell Differentiation --- p.5 / Chapter 1.2.1 --- Leukemia as Abnormalities in Hematopoietic Cell Development --- p.5 / Chapter 1.2.2 --- Classification and Etiology of Leukemia --- p.6 / Chapter 1.2.3 --- Current Modalities for the Treatment of Leukemia --- p.9 / Chapter 1.2.4 --- Leukemia Cell Lines as In Vitro Models for the Study of Myeloid Leukemia --- p.10 / Chapter 1.2.5 --- Cytokines as Inducers of Myeloid Leukemia Cell Differentiation --- p.12 / Chapter 1.2.6 --- The Murine Myeloid Leukemia Cell Line (WEHI- 3B JCS) as an Experimental Cell Model --- p.13 / Chapter 1.3 --- Flavonoids: Properties and Biological Activities --- p.15 / Chapter 1.3.1 --- Chemical Structure and Classification of Flavonoids --- p.15 / Chapter 1.3.2 --- Occurrence and Distribution of Flavonoids --- p.16 / Chapter 1.3.3 --- Biological Properties and Action Mechanisms of Flavonoids --- p.17 / Chapter 1.3.4 --- Effects of Flavonoids on Leukemia --- p.20 / Chapter 1.4 --- Aims and Scopes of This Investigation --- p.23 / Chapter CHAPTER 2: --- MATERIALS AND METHODS / Chapter 2.1 --- Materials --- p.26 / Chapter 2.1.1 --- Cell Lines --- p.26 / Chapter 2.1.2. --- Mice --- p.28 / Chapter 2.1.3 --- Flavonoids --- p.28 / Chapter 2.1.4 --- Recombinant Cytokines --- p.30 / Chapter 2.1.5. --- Physiological Differentiation Inducers ´ؤ Vitamin Analogs --- p.31 / Chapter 2.1.6 --- Monoclonal Antibodies --- p.31 / Chapter 2.1.7 --- "Buffers, Culture Medium and Other Reagents" --- p.33 / Chapter 2.1.8 --- Oligonucleotide Primers and Internal Probes --- p.36 / Chapter 2.1.9 --- Reagents for Cytokine Gene Expression Study --- p.38 / Chapter 2.2 --- Methods --- p.44 / Chapter 2.2.1 --- Culture of Tumor Cell Lines --- p.44 / Chapter 2.2.2 --- Determination of Cell Growth and Proliferation --- p.45 / Chapter 2.2.3 --- Colony Assay --- p.46 / Chapter 2.2.4 --- In vivo Tumorigenicity Assay --- p.46 / Chapter 2.2.5 --- Induction of Leukemic Cell Differentiation --- p.47 / Chapter 2.2.6 --- Cell Morphological Study --- p.47 / Chapter 2.2.7 --- Assessment of Differentiation Associated Characteristics --- p.48 / Chapter 2.2.7.1 --- Nitroblue Tetrazolium (NBT) Reduction Assay --- p.48 / Chapter 2.2.7.2 --- Assay of Plastic Adherence --- p.48 / Chapter 2.2.8 --- Flow Cytometric Analysis --- p.49 / Chapter 2.2.8.1 --- Surface Antigen Immunophenotyping --- p.49 / Chapter 2.2.8.2 --- Assay of Non-specific Esterase Activity --- p.50 / Chapter 2.2.8.3 --- Assay of Phagocytic Activity --- p.50 / Chapter 2.2.8.4 --- Assay of Endocytic Activity --- p.51 / Chapter 2.2.8.5 --- Cell Cycle/DNA Content Evaluation --- p.52 / Chapter 2.2.9 --- Gene Expression Analysis --- p.53 / Chapter 2.2.9.1 --- Cell Lysate Preparation --- p.53 / Chapter 2.2.9.2 --- Total RNA Isolation by cesium chloride isopycnic gradient --- p.53 / Chapter 2.2.9.3 --- Reverse Transcription --- p.54 / Chapter 2.2.9.4 --- Polymerase Chain Reaction (PCR) --- p.55 / Chapter 2.2.9.5 --- Agarose Gel Electrophoresis --- p.56 / Chapter 2.2.9.6 --- DIG 3,End Labeling of Oligonucleotide Probes --- p.57 / Chapter 2.2.9.7 --- Dot Blot Hybridization --- p.57 / Chapter 2.2.9.8 --- DIG Chemiluminescent Detection --- p.58 / Chapter 2.2.10 --- DNA Fragmentation Analysis --- p.59 / Chapter 2.2.11 --- Statistical Analysis --- p.60 / Chapter CHAPTER 3: --- EFFECTS OF FLAVONOIDS ON THE PROLIFERATION AND APOPTOSIS OF MYELOID LEUKEMIA CELLS / Chapter 3.1 --- Introduction --- p.61 / Chapter 3.2 --- Results --- p.63 / Chapter 3.2.1 --- Growth-Inhibitory Effects of Flavone on Murine Myeloid Leukemia JCS Cells --- p.63 / Chapter 3.2.2 --- Cytotoxic Effects of Flavone on Murine Lymphocytes and Myeloid Leukemia JCS Cells --- p.67 / Chapter 3.2.3 --- Effects of Different Flavonoids on the Proliferation of Leukemia JCS Cells --- p.70 / Chapter 3.2.4 --- Anti-proliferative Effect of Flavonoids on Different Tumor Cell Lines --- p.74 / Chapter 3.2.5 --- Effects of Flavone and Flavonol on the Cell Cycle Kinetics of JCS Cells --- p.86 / Chapter 3.2.6 --- Induction of DNA Fragmentation of JCS cells by Flavone --- p.89 / Chapter 3.2.7 --- Effect of Flavone on the Clonogenicity of JCS Cells In Vitro and Tumorigenicity In Vivo --- p.92 / Chapter 3.3 --- Discussion --- p.94 / Chapter CHAPTER 4: --- EFFECTS OF FLAVONOIDS ON THE DIFFERENTIATION OF MURINE MYELOID LEUKEMIA JCS CELLS / Chapter 4.1 --- Introduction --- p.98 / Chapter 4.2 --- Results --- p.100 / Chapter 4.2.1 --- Morphological Changes in Flavonoid-Treated JCS Cells --- p.100 / Chapter 4.2.2 --- Induction of Plastic Adherence in Flavonoid- Treated JCS Cells --- p.106 / Chapter 4.2.3 --- Surface Antigen Immunophenotyping of Differentiating JCS Cells --- p.106 / Chapter 4.2.4 --- NBT-Reducing Activity of Flavonoid-Treated JCS Cells --- p.114 / Chapter 4.2.5 --- Non-specific Esterase Activity of Flavonoid- Treated JCS Cells --- p.115 / Chapter 4.2.6 --- Endocytic Activity of Flavonoid-Treated JCS Cells --- p.116 / Chapter 4.2.7 --- Phagocytic Activity of Flavonoid-Treated JCS Cells --- p.117 / Chapter 4.3 --- Discussion --- p.118 / Chapter CHAPTER 5: --- MECHANISTIC STUDIES ON THE ANTI- PROLIFERATIVE AND DIFFERENTIAION-INDUCING ACTIVITIES OF FLAVONE ON MURINE MYELOID LEUKEMIA JCS CELLS / Chapter 5.1 --- Introduction --- p.122 / Chapter 5.2 --- Results --- p.125 / Chapter 5.2.1 --- Combinations of Flavone with Physiological Differentiation Inducers on the Proliferation and Differentiation of JCS Cells --- p.125 / Chapter 5.2.1.1 --- Modulatory Effects of Flavone and All-Trans Retinoic Acid (ATRA) on the Proliferation and Differentiation of JCS Cells --- p.125 / Chapter 5.2.1.2 --- "Modulatory Effects of Flavone and 1,25- dihydroxyvitamin D3 on the Proliferation and Differentiation of JCS Cells" --- p.130 / Chapter 5.2.2 --- Combinations of Flavone and Cytokines on the Proliferation and Differentiation of JCS Cells --- p.134 / Chapter 5.2.2.1 --- Modulatory Effects of Flavone and rmlFN-γ on the Proliferation and Differentiation of JCS Cells --- p.134 / Chapter 5.2.2.2 --- Synergistic Effects of Flavone and rmIL-1 on the Proliferation and Differentiation of JCS Cells --- p.137 / Chapter 5.2.3 --- Modulation of Cytokine Gene Expressionin Flavone-Treated JCS Cells --- p.144 / Chapter 5.3 --- Discussion --- p.159 / Chapter CHAPTER 6: --- CONCLUSIONS AND FUTURE PERSPECTIVES --- p.165 / REFERENCES --- p.171
363

Roles of prostaglandin E₂ in WEHI-3B JCS myeloid leukemia cell differentiation and normal haemopoiesis.

January 2001 (has links)
Chiu Lai-Ching. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 137-152). / Abstracts in English and Chinese. / Acknowledgement --- p.II / Abstract --- p.IV / Contents --- p.VIII / Abbreviations --- p.XIV / Chapter Chapter One --- General introduction / Chapter 1.1 --- Haemopoiesis --- p.1 / Chapter 1.1.1 --- Background --- p.1 / Chapter 1.1.2 --- Regulation --- p.2 / Chapter 1.1.2.1 --- Stromal cells --- p.2 / Chapter 1.1.2.2 --- Haemopoietic regulator --- p.3 / Chapter 1.1.2.3 --- Haemopoietic regulator receptors and signal transduction --- p.5 / Chapter 1.2 --- Disorder of haemopoiesis --- p.9 / Chapter 1.2.1 --- Causes --- p.9 / Chapter 1.2.2 --- Types of leukemia --- p.9 / Chapter 1.2.3 --- Treatment of leukemia --- p.10 / Chapter 1.3 --- Prostaglandins --- p.13 / Chapter 1.3.1 --- Introduction --- p.13 / Chapter 1.3.2 --- Types and biosynthesis --- p.14 / Chapter 1.3.3 --- Prostaglandin receptors --- p.15 / Chapter 1.3.4 --- Prostaglandins and cell differentiation --- p.17 / Chapter 1.3.4.1 --- PGD2 and cell differentiation --- p.19 / Chapter 1.3.4.2 --- PGE2 and cell differentiation --- p.20 / Chapter 1.3.4.3 --- PGJ2 and cell differentiation --- p.22 / Chapter 1.4 --- WEHI-3B JCS cells --- p.25 / Chapter 1.5 --- Aims of study --- p.27 / Chapter Chapter Two --- Roles of Prostaglandin D2,E2 and J2 in WEHI-3B JCS myeloid leukemia cell differentiation / Chapter 2.1 --- Introduction --- p.28 / Chapter 2.1.1 --- Morphological studies of JCS cells --- p.28 / Chapter 2.1.2 --- Methods in determining cell proliferation --- p.29 / Chapter 2.1.3 --- Methods in determining differentiated cells --- p.31 / Chapter 2.2 --- Materials --- p.33 / Chapter 2.2.1 --- Cell line --- p.33 / Chapter 2.2.2 --- Chemicals --- p.33 / Chapter 2.2.3 --- Solutions and buffers --- p.34 / Chapter 2.3 --- Methods --- p.36 / Chapter 2.3.1 --- Microscopic studies of the JCS cells --- p.36 / Chapter 2.3.1.1 --- Histochemical staining of JCS --- p.36 / Chapter 2.3.1.2 --- Transmission electronic microscopic --- p.36 / Chapter 2.3.2 --- [3H]-thymidine incorporation assay --- p.37 / Chapter 2.3.3 --- MTT assay --- p.37 / Chapter 2.4 --- Results --- p.38 / Chapter 2.4.1 --- Histochemical staining of JCS cells --- p.38 / Chapter 2.4.2 --- Electron microscopy --- p.40 / Chapter 2.4.3 --- "Effect of PGD2, E2 and J2 on JCS cells proliferation" --- p.44 / Chapter 2.4.4 --- "Effect of PGD2, E2 and J2 on JCS cells differentiation" --- p.48 / Chapter 2.5 --- Discussion --- p.53 / Chapter 2.5.1 --- Morphological differentiation of JCS cells --- p.53 / Chapter 2.5.2 --- The ultra-structures of JCS cells --- p.53 / Chapter 2.5.3 --- "Effect of PGD2, E2 and J2 on JCS cells proliferation" --- p.54 / Chapter 2.5.4 --- "Effect of PGD2, E2 and J2 on JCS cells differentiation" --- p.55 / Chapter Chapter Three --- Roles of Prostaglandin E2 in normal haemopoiesis and the detection of PGE2 receptors expression in JCS and bone marrow cells / Chapter 3.1 --- Introduction --- p.57 / Chapter 3.1.1 --- Colony assay --- p.57 / Chapter 3.1.2 --- The use of RT-PCR --- p.58 / Chapter 3.1.3 --- Prostaglandin E receptors --- p.59 / Chapter 3.2 --- Materials --- p.62 / Chapter 3.2.1 --- Bone marrow cells --- p.62 / Chapter 3.2.2 --- Cell line --- p.62 / Chapter 3.2.3 --- Chemicals --- p.62 / Chapter 3.2.4 --- Primers --- p.63 / Chapter 3.2.5 --- Solutions and buffers --- p.64 / Chapter 3.2.6 --- Enzymes and reagents --- p.65 / Chapter 3.3 --- Methods --- p.66 / Chapter 3.3.1 --- Titration of mouse IL-3 --- p.66 / Chapter 3.3.2 --- Determination of suitable IL-3 concentration for growth of bone marrow cells in colony assay --- p.66 / Chapter 3.3.2.1 --- Preparation of bone marrow cells --- p.66 / Chapter 3.3.2.2 --- Preparation of culture medium for colony assay --- p.67 / Chapter 3.3.3 --- Investigation of the effect of PGE2 on normal haemopoiesis by colony assay --- p.68 / Chapter 3.3.4 --- Detection of PGE2 receptors expression on JCS cells and bone marrow cells --- p.68 / Chapter 3.3.4.1 --- Preparation of cell lysates --- p.68 / Chapter 3.3.4.2 --- Preparation of total RNA of JCS cells and bone marrow cells --- p.68 / Chapter 3.3.4.3 --- RT-PCR --- p.69 / Chapter 3.4 --- Results --- p.71 / Chapter 3.4.1 --- Titration of mouse IL-3 --- p.71 / Chapter 3.4.2 --- Effect of mouse IL-3 on normal haemopoiesis --- p.73 / Chapter 3.4.3 --- Effect of PGE2 on mouse IL-3 driven normal bone marrow cell differentiation --- p.76 / Chapter 3.4.4 --- Analysis of total RNA prepared from uninduced JCS cells and bone marrow cells --- p.79 / Chapter 3.4.5 --- "Expression of gapdh in heart, liver, spleen, JCS and bone marrow cells" --- p.81 / Chapter 3.4.6 --- "Expression of PGE2 receptors in heart, liver, spleen, JCS and bone marrow cells" --- p.82 / Chapter 3.5 --- Discussion --- p.84 / Chapter 3.5.1 --- Effect of PGE2 on IL-3 driven normal bone marrow cells differentiation --- p.84 / Chapter 3.5.2 --- "Expression of PGE2 receptors in heart, liver, spleen, JCS and bone marrow cells" --- p.85 / Chapter Chapter Four --- Gene expression profile of JCS cells under 5 hours of PGE2 induction / Chapter 4.1 --- Introduction --- p.88 / Chapter 4.1.1 --- Review of methods studying differential gene expression --- p.88 / Chapter 4.1.2 --- The choice of method studying differential gene expression --- p.92 / Chapter 4.1.3 --- The microarray --- p.93 / Chapter 4.2 --- Materials --- p.95 / Chapter 4.2.1 --- Cell line --- p.95 / Chapter 4.2.2 --- Kits --- p.95 / Chapter 4.2.3 --- Chemicals --- p.95 / Chapter 4.2.4 --- Solutions and buffers --- p.96 / Chapter 4.2.5 --- Reagents --- p.97 / Chapter 4.3 --- Methods --- p.98 / Chapter 4.3.1 --- Preparation of total RNA from PGE2 induced JCS cells --- p.98 / Chapter 4.3.2 --- Preparation of cDNA probes --- p.98 / Chapter 4.3.2.1 --- Probe synthesis from total RNA --- p.98 / Chapter 4.3.2.2 --- Column chromatography --- p.99 / Chapter 4.3.3 --- Hybridizing cDNA probes to the Atlas Array --- p.99 / Chapter 4.4 --- Results --- p.101 / Chapter 4.4.1 --- Spectrophotometric analysis of total RNA after ethanol precipitation --- p.101 / Chapter 4.4.2 --- Hybridization of cDNA probes to Atlas Array --- p.102 / Chapter 4.5 --- Discussion --- p.121 / Chapter 4.5.1 --- Genes with increased expression --- p.121 / Chapter 4.5.2 --- Genes with decrease expression --- p.127 / Chapter 4.5.3 --- Study of gene expression profile by microarray --- p.128 / Chapter Chapter Five --- General discussion / Chapter 5.1 --- Introduction --- p.131 / Chapter 5.2 --- Roles of PGE2 in JCS cells differentiation --- p.131 / Chapter 5.3 --- Roles of PGE2 in normal haemopoiesis --- p.134 / Chapter 5.4 --- Further studies --- p.135 / References --- p.137
364

Selenocystine-induced apoptosis in human leukemia Sup-T₁ cells.

January 2010 (has links)
Wong, Wing Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 90-105). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.iii / Abstract (Chinese Version) --- p.v / Table of Contents --- p.vi / List of Figures --- p.ix / List of Abbreviations --- p.xi / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Overview of cancer --- p.1 / Chapter 1.2 --- Acute lymphoblastic leukemia --- p.3 / Chapter 1.2.1 --- T-cell acute lymphoblastic leukemia --- p.5 / Chapter 1.2.1.1 --- Chemotherapy / Chapter 1.2.1.2 --- Induction therapy / Chapter 1.2.1.3 --- Intensification therapy / Chapter 1.2.1.4 --- Maintenance therapy --- p.6 / Chapter 1.2.2 --- Chemoresistance in T-ALL / Chapter 1.3 --- Apoptosis and cancer --- p.7 / Chapter 1.3.1 --- Chemoresistance --- p.9 / Chapter 1.4 --- Caspase-dependent apoptosis --- p.10 / Chapter 1.4.1 --- Regulation of caspase-dependent apoptosis / Chapter 1.4.2 --- Initiation of apoptosis --- p.11 / Chapter 1.4.3 --- Exrtinsic pathway / Chapter 1.4.4 --- Intrinsic mitochondrial pathway --- p.15 / Chapter 1.4.4.1 --- Regulation of apoptosis by Bcl-2 family proteins --- p.16 / Chapter 1.4.4.2 --- Reactive Oxygen Species --- p.19 / Chapter 1.5 --- Selenium --- p.23 / Chapter 1.5.1 --- Importance of Se to human health --- p.25 / Chapter 1.5.2 --- Cancer chemoprevention by Se --- p.27 / Chapter 1.5.3 --- Preclinical studies --- p.28 / Chapter 1.5.4 --- Clinical investigations / Chapter 1.5.5 --- Mechanisms of action by selenocompounds --- p.29 / Chapter 1.6 --- Aims of current study --- p.31 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Cell culture --- p.32 / Chapter 2.2 --- Measurement of growth and survival of T-ALL cell lines / Chapter 2.3 --- Induction and quantification of apoptosis --- p.34 / Chapter 2.4 --- Western blotting / Chapter 2.4.1 --- Protein extraction and determination of protein concentration / Chapter 2.4.2 --- SDS-PAGE and immunodetection --- p.35 / Chapter 2.5 --- Analysis of mitochondrial membrane potential --- p.36 / Chapter 2.6 --- Measurement of ROS generation --- p.37 / Chapter 2.7 --- Verification of ROS generation via the addition of N-Acetyl-L-cysteine and glutathione / Chapter 2.8 --- Statistical analysis --- p.38 / Chapter Chapter 3 --- Results / Chapter 3.1 --- SeC induces prominent growth inhibition on Sup-T1 --- p.39 / Chapter 3.2 --- SeC induces S-phase arrest in cell cycle and triggers apoptosis in Sup-T1 --- p.44 / Chapter 3.3 --- SeC triggers DNA fragmentation in Sup-T1 --- p.48 / Chapter 3.4 --- SeC induces PARP cleavage in Sup-T1 --- p.52 / Chapter 3.5 --- SeC activates caspases in Sup-T1 --- p.53 / Chapter 3.6 --- SeC abrogates mitochondrial membrane potential in Sup-T1 cells --- p.56 / Chapter 3.7 --- SeC modulates expressions of Bcl-2 members and activates Bim and Bid in Sup-T1 --- p.61 / Chapter 3.8 --- SeC induces ROS production in Sup-T1 --- p.64 / Chapter 3.9 --- Antioxidants protect Sup-T1 cells from SeC-induced growth inhibition --- p.66 / Chapter 3.10 --- Antioxidants protect Sup-T1 cells from SeC-induced apoptosis --- p.69 / Chapter 3.11 --- Antioxidants effectively block SeC-induced ROS generation in Sup-T1 cells --- p.72 / Chapter 3.12 --- SeC induces mitochondrial membrane permeabilization via ROS-mediated mechanisms Sup-T1 cells --- p.75 / Chapter Chapter 4 --- Discussion --- p.79 / Conclusion --- p.87 / References --- p.90
365

Modulatory effects of conjugated linolenic acid (CLN) on the proliferation and apoptosis of human myeloid leukemia cells.

January 2007 (has links)
Yip, Wai Ki. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 203-228). / Abstracts in English and Chinese. / ACKNOWLEDGMENTS --- p.i / ABBREVIATIONS --- p.iii / ABSTRACT --- p.x / 撮要 --- p.xiv / TABLE OF CONTENTS --- p.xvii / Chapter CHAPTER 1: --- GENERAL INTRODUCTION / Chapter 1.1 --- Hematopoiesis and Leukemia / Chapter 1.1.1 --- An Overview on Hematopoiesis Development --- p.1 / Chapter 1.1.1.1 --- Hematopoietic Growth Factors --- p.4 / Chapter 1.1.1.2 --- Site Switching of Hematopoiesis --- p.5 / Chapter 1.1.2 --- An Overview on Leukemia --- p.7 / Chapter 1.1.2.1 --- Classification of Leukemia --- p.7 / Chapter 1.1.2.2 --- Conventional Therapy of Leukemia --- p.10 / Chapter 1.1.2.3 --- Novel Approaches to Leukemia Therapy: Apoptosis and Differentiation Induction --- p.13 / Chapter 1.2 --- Polysaturated Fatty Acids / Chapter 1.2.1 --- An Overview on Polyunsaturated Fatty Acids --- p.16 / Chapter 1.2.2 --- An Overview on Essential Fatty Acids --- p.17 / Chapter 1.2.2.1 --- Alpha Linolenic Acids (ALA) --- p.17 / Chapter 1.2.2.2 --- Gamma Linolenic Acid (GLA) --- p.18 / Chapter 1.2.3 --- "An Overview on Conjugated Fatty Acids: Conjugated Linoleic Acid (CLA), Conjugated EPA and Conjugated DHA" --- p.20 / Chapter 1.2.4 --- Conjugated Linolenic Acid (CLN) --- p.24 / Chapter 1.2.4.1 --- Identification and Production of CLN --- p.28 / Chapter 1.2.4.2. --- Metabolism of CLN --- p.29 / Chapter 1.2.4.3 --- Anti-Obese and Hypolipidemic Effect of CLN --- p.30 / Chapter 1.2.4.4 --- Anti-Proliferative Effect of CLN --- p.30 / Chapter 1.2.4.5 --- Other Novel Effects of CLN --- p.32 / Chapter 1.3 --- Aims and Scopes of This Investigation --- p.34 / Chapter CHAPTER 2: --- MATERIALS AND METHODS / Chapter 2.1 --- Materials --- p.36 / Chapter 2.1.1 --- Animals --- p.36 / Chapter 2.1.2 --- Human Cell Lines --- p.36 / Chapter 2.1.3 --- "Cell Culture Medium, Buffers and Other Reagents" --- p.38 / Chapter 2.1.4 --- Reagents and Buffer for Flow Cytometry --- p.44 / Chapter 2.1.5 --- Reagents for DNA Extraction --- p.47 / Chapter 2.1.6 --- Cell Death Detection ELISApLus --- p.48 / Chapter 2.1.7 --- Reagents for Measuring Caspase Activity --- p.50 / Chapter 2.1.8 --- Reagents for FACE´ёØ ELISA Kit --- p.53 / Chapter 2.1.9 --- Reagents for Western Blotting --- p.55 / Chapter 2.2 --- Methods --- p.65 / Chapter 2.2.1 --- Culturing the Tumor Cell Lines --- p.65 / Chapter 2.2.2 --- "Isolation, Preparation and Culturing of Murine Peritoneal Macrophages and Bone Marrow Cells" --- p.66 / Chapter 2.2.3 --- Anti-proliferation Assays --- p.67 / Chapter 2.2.4 --- Cell Viability Determination --- p.68 / Chapter 2.2.5 --- Determination of Anti-leukemia Activity In Vivo (In Vivo Tumorigenicity Assay) --- p.69 / Chapter 2.2.6 --- Cell Cycle Analysis by Flow Cytometry --- p.69 / Chapter 2.2.7 --- Detection of Apoptosis --- p.70 / Chapter 2.2.8 --- Assessment of Differentiation-associated Characteristics --- p.74 / Chapter 2.2.9 --- Measurement of Caspase Activities --- p.76 / Chapter 2.2.10 --- Protein Expression Study --- p.78 / Chapter 2.2.11 --- Detection of Phosphorylation of JNK by FACE´ёØ JNK ELISA Kit --- p.83 / Chapter 2.2.12 --- Detection of Phosphorylation of NF-kB by FACE´ёØ NF-kB p65 Profiler --- p.85 / Chapter 2.2.13 --- Statistical Analysis --- p.85 / Chapter CHAPTER 3: --- STUDIES ON THE ANTI PROLIFERATIVE EFFECTS OF CONJUGATED LINOLENIC ACIDS ON THE HUMAN MYELOID LEUKEMIA CELLS / Chapter 3.1 --- Introduction --- p.86 / Chapter 3.2 --- Results / Chapter 3.2.1 --- Anti-proliferative Activity of CLN Isomers on Various Myeloid Leukemia and Lymphoma Cell Lines In Vitro --- p.88 / Chapter 3.2.2 --- Direct Cytotoxic Effect of Jacaric Acid on HL-60 Cells In Vitro --- p.95 / Chapter 3.2.3 --- Cytotoxic Effect of Jacaric Acid on Primary Murine Cells and Human Normal Cell Lines In Vitro --- p.98 / Chapter 3.2.4 --- Kinetics and Reversibility Studies of the Anti-proliferative Effect of Four CLN Isomers on the Human Promyelocytic Leukemia HL-60 Cells --- p.101 / Chapter 3.2.5 --- Synergistic Anti-proliferative Effect of Jacaric Acid with Vitamin D3 and All Trans-Retinoic Acid (ATRA) on the Human Promyelocytic Leukemia HL-60 Cells In Vitro --- p.114 / Chapter 3.2.6 --- Effect of Jacaric Acid on the Cell Cycle Profile of the HL-60 Cells In Vitro --- p.116 / Chapter 3.2.7 --- Effect of Jacaric Acid on the In Vivo Tumorigenicity of the HL-60 Cells --- p.119 / Chapter 3.3 --- Discussion --- p.121 / Chapter CHAPTER 4: --- STUDIES ON THE APOPTOSIS-INDUCING AND DIFFERENTIATION-INDUCING EFFECTS OF CONJUGATED LINOLENIC ACIDS ON THE HUMAN MYELOID LEUKEMIA CELLS / Chapter 4.1.1 --- Introduction --- p.128 / Chapter 4.2 --- Results / Chapter 4.2.1 --- Induction of Apoptosis in the Human Promyelocytic Leukemia HL-60 Cells by Jacaric Acid --- p.134 / Chapter 4.2.2 --- Apoptosis-Inducing Effect of Jacaric Acid on the Human Promyelocytic Leukemia HL-60 Cells as Detected by Annexin V-GFP PI Double Staining Method --- p.138 / Chapter 4.2.3 --- Effect of Jacaric Acid on the Mitochondrial Membrane Potential in the Human Promyelocytic Leukemia HL-60 Cells --- p.140 / Chapter 4.2.4 --- Effects of Jacaric Acid on the Caspase Activities in the Human Promyelocytic Leukemia HL-60 Cells --- p.142 / Chapter 4.2.5 --- Effects of Jacaric Acid and Antioxidants on the ROS Induction in the Human Promyelocyic Leukemia hl-6 Cells --- p.147 / Chapter 4.2.6 --- Effect of N-acetyl-L-Cysteine on the Apoptosis-Inducing Activity of Jacaric Acid in the Human Promyelocytic Leukemia HL-60 Cells --- p.149 / Chapter 4.2.7 --- Morphological Studies on the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.151 / Chapter 4.2.8 --- Cell Size and Granularity of the Human Promyelocytic Leukemia HL-60 Cells after Treatment with Different CLN Isomers --- p.153 / Chapter 4.2.9 --- Expression of Differentiation-Related Cell Surface Markers in the Human Promyelocytic Leukemia HL-60 Cells after Treatment with Jacaric Acid --- p.155 / Chapter 4.3 --- Discussion --- p.158 / Chapter CHAPTER 5: --- STUDIES ON THE APOPTOSIS-ASSOCIATED PROTEINS AND SIGNALING PATHWAYS IN CONJUGATED LINOLENIC ACID-INDUCED APOPTOSIS OF THE HUMAN MYELOID LEUKEMIA CELLS / Chapter 5.1 --- Introduction --- p.165 / Chapter 5.2 --- Results / Chapter 5.2.1 --- Expression of Fas and Fas Ligand Proteins in the Jacaric Acid- treated Human Promyelocytic Leukemia HL-60 Cells --- p.171 / Chapter 5.2.2 --- Expression of Bcl-2 Family Member Proteins in the Jacaric Acid- treated Human Promyelocytic Leukemia HL-60 Cells --- p.173 / Chapter 5.2.3 --- Cytochrome c Release in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.175 / Chapter 5.2.4 --- Cleavage of Poly(ADP-ribose) Polymerase (PARP) in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.177 / Chapter 5.2.5 --- Phosphorylation of ERK in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.179 / Chapter 5.2.6 --- Phosphorylation of JNK in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.181 / Chapter 5.2.7 --- Phosphorylation of NF-kB Protein in the Jacaric Acid-treated Human Promyelocytic Leukemia HL-60 Cells --- p.183 / Chapter 5.3 --- Discussion --- p.185 / Chapter CHAPTER 6: --- CONCLUSIONS AND FUTURE PERSPECTIVES --- p.195 / REFERENCES --- p.203
366

Characterization of the Self-Replicating Kirsten Murine Leukemia Viral DNA: Replication and Tetracycline Resistance

Najmabadi, Hossein 08 1900 (has links)
This research project deals with the characterization of self-replicating Kirsten murine viral DNA. The replication of this viral DNA and tetracycline resistance conferred to bacteria by this viral DNA will be studied. The restriction endonuclease and Southern blot analysis revealed a fragment of pBR322 from the Hind III and Pst I site that is located in the 3' end of the MLV-K:E molecule. Single stranded sequencing of the two terminal ends of this fragment verified that the 3' end of MLV-K:E contains identical sequence homology to pBR322. The presence of this pBR322 fragment explains the unusual properties of the MLV-K:E molecule. However, tetracycline resistance is less in E. Coli containing MLV-K:E than E. coli containing pBR322 as determined by zone of inhibition assay. This may be due to alteration in the promoter region of the tetracycline gene.
367

Ex vivo expansion of human haemopoietic progenitor cells

Haylock, David Norman. January 2001 (has links) (PDF)
"December 2001." Includes bibliographical references (leaves 178-225) Focuses on the ex vivo growth of human haemopoietic progenitor cells with the objective of defining culture conditions for generating myeloid post-progenitor cells for therapy
368

A study of the circulating myeloid progenitor cell in man / Luen Bik To

To, Luen Bik January 1984 (has links)
Bibliography: leaves 1-14 of section Reference / [175] leaves : / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (M.D.)--University of Adelaide, 1985
369

Ex vivo expansion of human haemopoietic progenitor cells / by David Norman Haylock.

Haylock, David Norman January 2001 (has links)
"December 2001." / Includes bibliographical references (leaves 178-225) / xviii, 225 leaves : ill. (some col.), plates, charts ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Focuses on the ex vivo growth of human haemopoietic progenitor cells with the objective of defining culture conditions for generating myeloid post-progenitor cells for therapy / Thesis (Ph.D.)--University of Adelaide, Dept. of Molecular Biosciences, 2001
370

The Role of Colony-stimulating Factor 1 and its Receptor on Acute Myeloid Leukemia

Fateen, Mohammed 25 July 2012 (has links)
Colony-stimulating factor 1 receptor (CSF1R, Fms) is an integral transmembrane glycoprotein with tyrosine specific protein kinase activity that it is found on the mononuclear phagocytes to promote their survival, proliferation and differentiation. Colony-stimulating factor 1 (CSF-1), also known as M-CSF, is a protein ligand that acts on the CSF1R. There is a variable association of Fms with the stem cell marker CD34 on acute myeloid leukemia (AML) cells and this suggests different structures of the AML hierarchy in different patients. Mouse stromal cells (MS-5) were transduced with a plasmid containing human CSF-1 because mouse CSF-1 is inactive on human CSF1R. Results show that AML cells cultured with CSF-1-expressing stroma had a much better growth and survival than the control stroma, suggesting that CSF-1 might be a stimulating factor for the growth of leukemic stem cells.

Page generated in 0.0271 seconds