• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rock glacier activity and distribution in the southeastern British Columbia Coast Mountains

Charbonneau, Ansley Adeline 28 April 2015 (has links)
Rock glaciers are common features in high alpine settings of the southeastern British Columbia Coast Mountains. The spatial distribution and characteristics of these periglacial features have not previously been documented. The goal of this research was to determine the distribution and activity of these rock glaciers in order to characterize their periglacial response to climatic variability. A high-resolution aerial inventory documented the presence of 187 rock glaciers between Lat. 50° 10’ - 52° 08’ N. These rock glaciers occur at sites located between 1900 m and 2400 m above sea level, where rain shadow effects and continental air masses result in persistent dry cold conditions. Intact rock glaciers were the most prevalent form and accounted for almost 90% of the rock glaciers included in the inventory. Glacier-derived features outnumbered talus-derived features by a ratio of 4:1 and only 22 relict rock glaciers were identified. Rock glaciers in this region occupy predominately northwest- to northeast-facing slopes, with talus-derived rock glaciers largely restricted to north-facing slopes. All rock glaciers were found at locations above presumed Younger Dryas terminal moraines, suggesting that they began to form after 9390 BP. Rock glacier activity during the Late Holocene was characterized using lichenometric methods to establish the relative surface age of three talus-derived features at Perkins Peak. Sustained periods of cool-wet climates activated pulses of rock glacier surface instability and movement, while a shift to warmer, drier conditions resulted in the loss of internal ice and increased surface stability. Varying degrees of present-day activity highlight a local topoclimatic control on talus-derived rock glacier behaviour. A dendrogeomorphological investigation at nearby Hellraving rock glacier indicated that it has been steadily advancing into surrounding forest since the beginning of the late Little Ice Age. Its continued advance in the face of warming temperatures suggests the internal thermodynamics of this rock glacier may be out of equilibrium with the contemporary climate. This research is the first to document and characterize rock glaciers in the Coast Mountains and challenges previous understandings of permafrost distribution in the southwestern Canadian Cordillera. / Graduate
2

Relative age dating of the Wahianoa moraines, Mount Ruapehu, New Zealand : thesis submitted in partial fulfilment of the degree of Master of Science in Quaternary Science at Massey University, Palmerston North, New Zealand

Nolan, Erin Unknown Date (has links)
This study attempts to determine a relative age of the Wahianoa moraines, Mt Ruapehu using three relative age dating techniques: Lichenometry, Schmidt hammer and Boulder roundness. There were three study areas used, termed the Wahianoa ‘A’, ‘B’ and ‘C’ moraines. Upon determining a relative age for these moraines, their timing of their formation was placed within New Zealand’s glacial timescale. This is the first study of its kind conducted on Mt Ruapehu and has left the door open for more research in this field. The species of lichens measured on the Wahianoa moraines were Rhizocarpon subgenus, which the largest diameters were measured using callipers. A total of 606 lichens were measured in the Wahianoa Valley and were processed using the growth curve and size frequency methods. A lichenometric growth curve was constructed from lichens growing in the Ohakune cemetery. The dates derived from both methods placed the formation of the Wahianoa moraines during the Little Ice Age. An L-type Schmidt hammer was used on the boulders in the Wahianoa Valley. A total of 280 measurements were taken off the boulders on the Wahianoa moraines. The results of this method, when compared to Winkler’s (2005) study in the South Island placed the formation of the Wahianoa moraines pre-Little Ice Age. Although no definitive ages could be derived from this comparison due to differences in lithology between the two studies, it provided an idea as to where the formation of these moraines could belong. This is the first time that the Boulder roundness method has been used in New Zealand, having only been developed by Kirkbride (2005). This method was used to determine which of the ridges in the Wahianoa Valley were older. It was found that the Wahianoa ‘A’ moraines were the oldest in the valley followed by Wahianoa ‘B’ and ‘C’ respectively. A climate reconstruction was also conducted for the Wahianoa Valley to see what conditions may have been in existence during the formation of the Wahianoa moraines. The paleo-ELA for the Wahianoa Glacier was estimated using the Accumulation-Area Ratio (AAR), Terminus to Headwall Ratio (THAR), Maximum Elevation of the Lateral Moraines (MELM) and Extrapolation methods. The current ELA was estimated using the AAR, THAR and Extrapolation methods. The difference between these estimates was used to determine what temperature decrease would have caused the formation of the Wahianoa moraines. The average paleo-ELA was found to be c. 1715m, while the current ELA was found to be 2475m which lead to a 4.5°C decrease. This temperature decrease correlates well with that of the Last Glacial Maximum. This study found significant differences in relative age of the Wahianoa moraines. There are a number of factors that can affect the growth of lichens such as micro-environmentalconditions and the fact that a growth curve was constructed off site. Factors such aspetrography can affect the Schmidt hammer results and the Boulder roundness measurements. In addition, precipitation can affect the ELA values which can then cause the wrong placement within a glacial event. Further research lies in the use of the Schmidt hammer on a known age surface such as the Mangatepopo moraines which will aide in a better correlation of relative age. Also, further research using climate reconstructions on Mt Ruapehu and the effect of precipitation will also aide in a better correlation with a glacial event.
3

LITTLE ICE AGE CHRONOLOGY FOR CLASSEN AND GODLEY GLACIERS, MOUNT COOK NATIONAL PARK, NEW ZEALAND

Schoenenberger, Katherine R. 11 October 2001 (has links)
No description available.
4

Reconstitution des fluctuations glaciaires holocènes dans les Alpes occidentales : apports de la dendrochronologie et de la datation par isotopes cosmogéniques produits in situ / Holocene glacier fluctuations reconstruction in the Western Alps : contribution of dendrochronology and Cosmic Ray Exposure Dating

Le Roy, Melaine 02 May 2012 (has links)
Les glaciers de montagne sont l'un des meilleurs indicateurs des changements climatiques du fait de leur réponse rapide à de faibles variations des paramètres de forçage et de leur large distribution sur la planète. Les chronologies glaciaires représentent de ce fait des enregistrements de référence parmi les reconstitutions paléo-environnementales. Dans le contexte actuel de réchauffement et de retrait glaciaire accéléré, le développement de telles chronologies est nécessaire afin de mettre en perspective ces changements rapides et de grande ampleur avec ceux du Quaternaire récent. Si les fluctuations glaciaires holocènes sont relativement bien contraintes dans les Alpes centrales et orientales, les données sont en revanche extrêmement fragmentaires dans les Alpes occidentales avant la seconde moitié du Petit Age Glaciaire ss (1570-1850 AD). Pour pallier ce manque, nous avons conduit une étude sur plusieurs sites répartis dans trois massifs des Alpes françaises (Mont Blanc, Belledonne, Ecrins), en mettant en œuvre une approche multi-proxies basée sur plusieurs méthodes de datation (dendrochronologie, datation cosmogéniques 10Be, lichénométrie, datations radiocarbone) – dont certaines utilisées pour la première fois à cette échelle spatiale et temporelle. Tandis que les potentialités de chacune de ces méthodes sont discutées, notre étude a permis de proposer une chronologie des variations glaciaires couvrant la période holocène, dont les résultats sont comparés à d'autres enregistrements paléoclimatiques régionaux à haute résolution. Les résultats révèlent un schéma des fluctuations glaciaires holocènes comparable à celui généralement admis dans le reste des Alpes, avec la mise en évidence de récurrences glaciaires importantes au début de l'Holocène, antérieures à 9.3 ka, et la datation du début de la période du Néoglaciaire dès 4.2 ka. Une contrainte précise des différents stades de la seconde moitié de l'Holocène a pu être obtenue sur le site de la Mer de Glace grâce à l'approche dendroglaciologique sur bois subfossiles (Pinus cembra). Ce site apparaît d'ores et déjà comme l'un des plus importants pour l'étude de cette période puisque la chronologie établie couvre les 4000 dernières années et représente le quatrième enregistrement de cette précision à être développé dans les Alpes. Les datations obtenues indiquent en outre un synchronisme marqué des maxima glaciaires à l'échelle régionale, ce qui suggère une similarité des forçages sur la frange occidentale des Alpes. Les différences observées avec les chronologies du reste de la chaine s'expliqueraient principalement par les caractéristiques des glaciers étudiés, en particulier leur temps de réponse différent. / Mountain glaciers are one of the most reliable climatic proxy on Earth through their rapid response to slight changes in forcing and their wide distribution. For these reasons glacial chronologies constitutes reference series against which other paleoenvironmental reconstructions are evaluated. In the current context of global warming and glacier withdrawal worldwide, the building of such records is increasingly needed to assess these rapid and dramatic changes on the longer Late Quaternary timescale. The Holocene glacier fluctuations are now fairly well known in the Central and Eastern Alps, but datas from the Western Alps are extremely sparse, and the chronology of glacier fluctuations before the second half of the Little Ice Age (LIA) ss (1570-1850 AD) is thus poorly constrained. To fill this gap, we carried out a study on several sites distributed in three glaciated range of the French Alps (Mont Blanc, Belledonne, Ecrins). We choose a multi-proxies approach based on the implementation of several dating methods (dendrochronology, Cosmic Ray Exposure dating with 10Be, lichenometry, radiocarbon) – some of which were used for the first time on these spatial- and time-scales. This approach allowed us to propose a glacial chronology spanning the Holocene. Moreover, strength and weakness of the different methods used are discussed, and the results are compared to other high resolution proxies from the Great Alpine Region. Our results shows a picture broadly similar to the Holocene glacier variations model currently accepted in the European Alps : we shows evidence for large Early-Holocene advances prior to 9.3 ka and for the beginning of the Neoglacial period from 4.2 ka onwards. An accurate dating of the Neoglacial stadials was possible at Mer de Glace through the use of a dendroglaciological approach on subfossil woods (Pinus cembra). This site already appears as one of the most interesting in the whole Alps to study the Neoglacial period, as the chronology established there spans the last 4 ka and is the 4th record of this kind builds in the Alps. The datings presented here reveals a marked synchroneity for Neoglacial maxima at the Alpine scale, which could indicate similar forcing on glaciers from the Western fringe. Main discrepancies between the records could be explained by topographic and size characteristics of the studied glaciers, as expressed by their response time.
5

Debris flows in glaciated catchments : a case study on Mount Rainier, Washington

Legg, Nicholas T. 15 March 2013 (has links)
Debris flows, which occur in mountain settings worldwide, have been particularly damaging in the glaciated basins flanking the stratovolcanoes in the Cascade Range of the northwestern United States. This thesis contains two manuscripts that respectively investigate the (1) initiation processes of debris flows in these glaciated catchments, and (2) debris flow occurrence and its effect on valley bottoms over the last thousand years. In a 2006 storm, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and distributed collapse of gully walls imply that clear water was transformed to debris flow through progressive addition of sediment along gully lengths. In the first study, we analyze gully changes, reconstruct runoff conditions, and assess spatial distributions of debris flows to infer the processes and conditions necessary for debris flow initiation in glaciated catchments. Gully measurements suggest that sediment bulking requires steep gradients, abundant unstable material, and sufficient gully length. Reconstruction of runoff generated during the storm suggests that glaciers are important for generating the runoff necessary for debris flow initiation, particularly because infiltration capacities on glacial till covered surfaces well exceed measured rainfall rates. Runoff generation from glaciers and abundant loose debris at their termini explain why all debris flows in the storm initiated from proglacial areas. Proglacial areas that produced debris flows have steeper drainage networks with significantly higher elevations and lower drainage areas, suggesting that debris flows are associated with high elevation glaciers with relatively steep proglacial areas. This correlation reflects positive slope-elevation trends for the Mount Rainier volcano. An indirect effect of glacier change is thus the change in the distribution of ice-free slopes, which influence a basin’s debris flow potential. These findings have implications for projections of debris flow activity in basins experiencing glacier change. The second study uses a variety of dating techniques to reconstruct a chronology of debris flows in the Kautz Creek valley on the southwest flank of Mount Rainier (Washington). Dendrochronologic dating of growth disturbances combined with lichenometric techniques constrained five debris flow ages from 1712 to 1915 AD. We also estimated ages of three debris flows ranging in age from ca. 970 to 1661. Run-out distances served as a proxy for debris flow magnitude, and indicate that at least 11, 2, and 1 debris flow(s) have traveled at least 1, 3, and 5 km from the valley head, respectively since ca. 1650. Valley form reflects the frequency-magnitude relationship indicated by the chronology. In the upper, relatively steep valley, discrete debris flow snouts and secondary channels are abundant, suggesting a process of debris flow conveyance, channel plugging, and channel avulsion. The lower valley is characterized by relatively smooth surfaces, an absence of bouldery debris flow snouts, few secondary channels, and relatively old surface ages inferred from the presence of tephra layers. We infer that the lower valley is deposited on by relatively infrequent, large magnitude, low-yield strength debris flows like an event in 1947, which deposited wide, tabular lobes of debris outside of the main channel. Debris flows during the Little Ice Age (LIA) predominantly traveled no further than the upper valley. Stratigraphic evidence suggests that the main Kautz Creek channel was filled during the LIA, enhancing debris flow deposition on the valley surface and perhaps reducing run-out lengths. Diminished areas and gradients in front of glaciers during the LIA also likely contributed to decreased run-out lengths. These findings suggest that changes in debris flow source and depositional zones resulting from temperature and glacier cycles influence the magnitude and run-out distances of debris flows, and the dynamics of deposition in valley bottoms. / Graduation date: 2013

Page generated in 0.0737 seconds