• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 16
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Links between avian botulism outbreaks in waterfowl, hatching asynchrony, and life history trade-offs of prefledgling Franklin's gulls (<i>larus pipixcan</i>)

Soos, Catherine 01 December 2004 (has links)
This study investigated factors associated with two mortality events: avian botulism in waterfowl and mortality associated with hatching asynchrony in prefledgling Franklins gulls (Larus pipixcan). The initial focus of my research was on the spatiotemporal relationship between mortality of Franklins gulls and the onset of botulism outbreaks in waterfowl, and the suitability of gull carcasses for proliferation and toxigenesis of Clostridium botulinum. From 1999 to 2001, dead hatch-year Franklins gulls were by far the most abundant carcasses, and the only source of toxin-laden maggots found on transects prior to the occurrence of avian botulism in waterfowl. Nest density was a significant predictor of hatch-year gull carcass density. High density of toxic material from gull carcasses prior to the onset of botulism in waterfowl coincided with high densities of susceptible birds; hence, mortality of Franklins gulls has the potential to be a major initiating factor for botulism outbreaks at Eyebrow Lake, Saskatchewan. The causes of gull mortality were conditions or diseases associated with starvation, stress, or immunosuppression, and most mortality occurred in third-hatched chicks. To separate effects of laying order from effects of hatching asynchrony on prefledgling survival, a cross-fostering experiment was conducted to create clutches containing asynchronously hatching eggs of the same laying order, and of similar egg mass, egg volume, and female quality. Hatching order, independent of laying order, significantly affected survival to fledging, whereas laying order had no observable effect, indicating that intraclutch variation in egg quality does not predetermine the fate of prefledglings, and may be less important than hatching asynchrony for survival of prefledgling Franklins gulls. Relationships among hatching asynchrony, laying order, mass, corticosterone, immune function, growth, and survival at two stages of development were complex. Hatching asynchrony significantly affected early and late prefledgling survival, and was directly or indirectly associated with mass, corticosterone level, and cell-mediated immune responses at early and later stages of development. Both hatching asynchrony and mass appeared to play key roles in mediating life history trade-offs among cell-mediated immune function, growth, and survival. In contrast to cell-mediated immune responses, primary humoral immune response was not directly affected by hatching order or mass, nor was it associated with survival to fledging. Rather, it was associated with laying order, neonatal testosterone, corticosterone at 2 weeks, growth of leg length, and clutch initiation date, illustrating the importance of examining more than one branch of the immune system in studies of life history trade-offs. This study is a step toward using a multipronged and multidisciplinary approach to demonstrate interactions and trade-offs among life history traits, the physiological mechanisms that produce these relationships, and how these relationships may change depending on stage of development.
12

Parental effort in the Northern Flicker (Colaptes auratus) and the trade-off between quantity and quality of offspring

2014 September 1900 (has links)
The two main goals of my thesis were to further our understanding of how parental effort is related to life-history trade-offs and to see how parental investment is reflected in various potential measures of nestling quality. I looked at how fitness is maximized by examining (1) the trade-off between current and future reproduction, and (2) the trade-off between quantity and quality of offspring. To see how parents responded to energetic demands and whether each sex reacted in a similar way, I experimentally manipulated brood sizes and quantified provisioning rates. Both male and female parents with enlarged broods increased their feeding rates, but provisioning on a per nestling basis declined, so that parents fledged lighter nestlings with shorter wings. Although the incidence of mortality did not differ between control and enlarged broods, nestlings from enlarged broods were lighter than those from control broods with the same brood size, suggesting that clutch size may be individually optimized. I also looked at how nestlings responded to different levels of nutritional stress in the manipulated broods by quantifying size and body condition, plumage colouration, and the physiological measures of T-cell mediated immune responses, and corticosterone levels in nestling feathers as a long-term integrated measure of stress physiology. The size of melanin ornaments on feathers and the saturation and brightness of carotenoid colouration was associated with nestling mass in such a way that suggested that plumage characteristics reflect nestling quality. The immune function of nestlings was negatively related to brood size and nestlings in better body condition could mount greater immune responses to foreign antigens suggesting that immune responses are energetically costly. Corticosterone levels in the feathers were not related to nestling body condition and were unaffected by the experimental brood manipulation. The ii mass of male nestlings, which are the larger sex, was more compromised by brood size than female mass was. I also found sex-specific relationships between plumage characteristics and measures of physiological performance. These findings help to explain optimal clutch size and the classic trade-off between quality and quantity of offspring. They also offer new insights into the reliability of putative measures of quality in nestlings and relationships between physiological and morphological traits.
13

Age, Longevity and Life-History Trade-Offs in the Collared Flycatcher (Ficedula albicollis)

Sendecka, Joanna January 2007 (has links)
Age is often a neglected factor in ecological studies. However, age-related changes in reproduction and survival of organisms may strongly influence population dynamics. The Gotlandic population of collared flycatchers is a perfect system for studying age-related changes in the wild, as the exact age and reproductive history of most individuals is known. Collared flycatchers (Ficedula albicollis) on Gotland show the typical pattern of age-related changes in survival and reproductive success; both factors show an increase early in life and a decrease late in life. This thesis presents a broad study not only of age-related patterns of reproduction and immunity, but also proposes the mechanisms driving these patterns. My results show that in addition to survival probability and reproductive performance, reproductive costs and life-history trade-offs also change with progressing age. There is a significant increase in reproductive performance at the population level during first years of life which result from selection against low quality phenotypes. On the individual level this pattern is best explained by an optimization of reproductive effort. However, high quality individuals have higher reproductive success as early as their first breeding event and are long-lived. Thus, they seem to adopt a different strategy than lower quality, short-lived individuals. Differences in individual quality seem to be shaped by the developmental conditions experienced as nestlings. Fledglings with longer tarsi, but lower body mass become long-lived, high quality adults. Young individuals breeding for first time pay higher costs of reproduction. They also express a limited ability to reduce these costs by breeding in high quality territories when compared to middle-aged individuals. Young individuals seem to invest more into self-maintenance, whereas old individuals reduce the level of self-maintenance (measured as immune response) and redistribute their investment towards reproduction. Thus, old individuals are limited in their ability to reduce reproductive costs under favorable conditions, especially as they also senesce, which pattern is also shaped by individual quality. Variation in individual quality appears to have an strong effect on age-related survival probability, reproductive performance, reproductive costs, and even life-history decisions. Therefore, taking this factor into account in studies of life-history patterns is necessary to obtain reliable results.
14

Spatial heterogeneity in ecology

Mealor, Michael A. January 2005 (has links)
This project predominantly investigated the implications of spatial heterogeneity in the ecological processes of competition and infection. Empirical analysis of spatial heterogeneity was carried out using the lepidopteran species Plodia interpunctella. Using differently viscous food media, it was possible to alter the movement rate of larvae. Soft Foods allow the movement rate of larvae to be high, so that individuals can disperse through the environment and avoid physical encounters with conspecifics. Harder foods lower the movement rate of larvae, restricting the ability of individuals to disperse away from birth sites and avoid conspecifics encounters. Increasing food viscosity and lowering movement rate therefore has the effect of making uniform distributed larval populations more aggregated and patchy. Different spatial structures changed the nature of intraspecific competition, with patchy populations characterised by individuals experiencing lower growth rates and greater mortality because of the reduced food and space available within densely packed aggregations. At the population scale, the increased competition for food individuals experience in aggregations emerges as longer generational cycles and reduced population densities. Aggregating individuals also altered the outcome of interspecific competition between Plodia and Ephestia cautella. In food media that allowed high movement rates, Plodia had a greater survival rate than Ephestia because the larger movement rate of Plodia allowed it to more effectively avoid intraspecific competition. Also the faster growth rate, and so larger size, of Plodia allowed it to dominate interspecific encounters by either predating or interfering with the feeding of Ephestia. In food that restricts movement, the resulting aggregations cause Plodia to experience more intraspecific encounters relative to interspecific, reducing its competitive advantage and levelling the survival of the two species. Spatial structure also affected the dynamics of a Plodia-granulosis virus interaction and the evolution of virus infectivity. Larval aggregation forced transmission to become limited to within host patches, making the overall prevalence of the virus low. However potentially high rates of cannibalism and multiple infections within overcrowded host aggregations caused virus-induced mortality to be high, as indicated by the low host population density when virus is presented. Also aggregated host populations cause the evolution of lower virus infectivity, where less infective virus strains maintain more susceptible hosts within the aggregation and so possess a greater transmission rate. The pattern of variation in resistance of Plodia interpunctella towards its granulosis virus was found using two forms of graphical analysis. There was a bimodal pattern of variation, with most individuals exhibiting either low or high levels of resistance. This pattern was related to a resistance mechanism that is decreasingly costly to host fitness.
15

Implications du stress oxydant et du découplage mitochondrial dans les compromis entre traits d'histoire de vie / At the crossroad of metabolism and ageing : mitochondrial proximal control of oxidants and ultimate modulation of life history trade-offs

Stier, Antoine 24 October 2013 (has links)
L’attention scientifique s’est récemment portée sur l’identification des mécanismes proximaux sous-tendant les compromis évolutifs;tels que les compromis existant entre croissance/reproduction et longévité. La production d’espèces réactives de l’oxygène (ROS )a été suggérée comme un candidat potentiel ,de par sa liaison étroite au métabolisme énergétique (sous-­produits du fonctionnement mitochondrial) et son caractère inévitable. Si la production de ROS excède le niveau des défenses antioxydantes, une situation de stress oxydant va en résulter et a été associé au vieillissement . Puisque la mitochondrie n’est pas uniquement la centrale énergétique de la cellule mais aussi le principal producteur de ROS, cette thèse s’est attachée à clarifier les relations entre métabolisme énergétique , fonctionnement mitochondrial et stress oxydant ; avec des études concernant l’impact d’activités coûteuses en énergie (croissance, reproduction, thermogénèse) sur l’équilibre de la balance oxydative. / In recent years, scientific attention has turned towards the identification of the mechanisms underlying the trade-­‐offs occurring between growth rate/reproductive investment and longevity. Amongst these mechanisms, the production of reactive oxygen species (ROS) appears to be a key factor due both to its universal and inevitable nature. ROS are by-­‐products of energy processing by the mitochondria. If ROS production exceeds the capacity of the various antioxidant systems, oxidative stress will occur, and the accumulation of oxidative damage over time is thought to be a potential cause of ageing. Since mitochondria are not only the powerhouse of animal cells but also the main producer of ROS, this PhD thesis aimed to clarify the relationships between mitochondrial uncoupling state (i.e. efficiency to produce ATP), energy metabolism and oxidative stress. I investigated the impact of energy-­‐demanding activities such as thermogenesis, reproduction and growth on oxidative homeostasis.
16

Sénescence et longévité : des mécanismes aux processus évolutifs : étude chez les oiseaux et les mammifères / Senescence and longevity : from physiological mechanisms to evolutionary processes : studies in birds and mammals

Guerreiro, Romain 14 December 2012 (has links)
Il existe dans le règne animal une diversité incroyable de durées de vie allant de quelques jours pour les petits vers gastrotriches à plusieurs centaines d’années pour certains bivalves ou tortues terrestres. Cette étonnante diversité a depuis longtemps questionné les chercheurs en biologie. L’intérêt croissant pour le phénomène de vieillissement, notamment dû à l’augmentation de l’espérance de vie chez l’Homme, a conduit les chercheurs à essayer de comprendre les processus qui déterminent les patrons de longévité et de vieillissement. D’une part, les études biomédicales et biogérontologiques ont contribué à décrire nombres de mécanismes physiologiques et cellulaires à l’origine du vieillissement. Parmi ces mécanismes, le stress oxydant a été identifié comme jouant un rôle majeur, à travers l’accumulation au cours de la vie des dégâts générés par la production de radicaux libres lors d’activités métaboliques aérobies. D’autre part, le développement de théories évolutives du vieillissement a contribué à comprendre l’origine ultime du vieillissement et l’évolution de la diversité des traits d’histoire de vie. Cependant, ces approches, bien que complémentaires, sont longtemps restées imperméables et les travaux intégrant les mécanismes physiologiques tels que le stress oxydant dans une perspective évolutive n’ont connu que de récents développements. Dans cette thèse, nous avons étudié comment des mécanismes tels que le stress oxydant et ses coûts associés lors d’évènements comme la reproduction ou la réponse immunitaire pouvaient jouer un rôle dans l’évolution des patrons de vieillissement chez les oiseaux et les mammifères (i) en étudiant le rôle des antioxydants comme ressources clés dans les compromis adaptatifs entre reproduction et survie en fonction de l’âge, (ii) en étudiant les conséquences à long terme de l’environnement périnatal, (iii) en étudiant le lien entre réponse inflammatoire et patrons de vieillissement et de longévité contrastée entre oiseaux et mammifères, (iv) en s’intéressant plus particulièrement aux mécanismes de régulation immunitaire, soulignant leur rôle crucial pour la fitness des hôtes, et notamment tard dans la vie. Nos résultats soulignent l’importance des contraintes physiologiques liées à la limitation en ressources clés (antioxydants) ou aux dégâts engendrés lors d’activités coûteuses et destructrices et sur les patrons de vieillissements à l’échelle intra et inter-spécifique. / There is an incredible diversity of lifespan in the animal kingdom ranging from a few days for small gastrotrichs worms to several hundred of years for some bivalves or tortoises. This amazing diversity has long questioned biology researchers. The growing interest in the phenomenon of aging, mainly due to the increase in life expectancy in humans, has questioned researchers on processes that determine patterns of longevity and ageing. On the one hand, biomedical and biogerontological studies helped describe numerous cellular and physiological mechanisms related to aging. Among these mechanisms, oxidative stress has been identified as playing a major role, through life-time accumulation of damage generated by production of metabolic free radicals. On the other hand, the development of evolutionary theories of aging has contributed to understanding ultimate origins of ageing and of the diversity of life history traits. However, these approaches, although complementary, have long remained separated and works that integrate physiological mechanisms such as oxidative stress in an evolutionary perspective have known only recent developments. In this thesis, we studied how mechanisms such as oxidative stress and its associated costs produced during reproduction or immune response could play a role in the evolution of patterns of ageing in birds and mammals by (i) studying the role of antioxidants as key resources involved in adaptive trade-offs between reproduction and survival through age, (ii) studying the long-term effects of the early environment, (iii) studying the relationship between inflammatory response and contrasted patterns of ageing and longevity between birds and mammals, (iv) focusing particularly on immune regulatory mechanisms, emphasizing their crucial role in fitness of hosts, especially late in life. Overall, our results highlight the importance of physiological constraints in terms of key resources limitation (i.e. antioxidants) or damage caused during costly and destructive activities and on intra-and inter-specific patterns of ageing.

Page generated in 0.0508 seconds