• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 9
  • 6
  • 4
  • Tagged with
  • 68
  • 68
  • 32
  • 28
  • 14
  • 13
  • 11
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Algorithmes pour le (dés)assemblage d'objets complexes et applications à la biologie structurale / (Dis)assembly path planning for complex objects and applications to structural biology

Le, Duc Thanh 28 September 2010 (has links)
La compréhension et la prédiction des relations structure-fonction de protéines par des approches in sillico représentent aujourd'hui un challenge. Malgré le développement récent de méthodes algorithmiques pour l'étude du mouvement et des interactions moléculaires, la flexibilité de macromolécules reste largement hors de portée des outils actuels de modélisation moléculaire. L'objectif de cette thèse est de développer une nouvelle approche basée sur des algorithmes de planification de mouvement issus de la robotique pour mieux traiter la flexibilité moléculaire dans l'étude des interactions protéiques. Nous avons étendu un algorithme récent d'exploration par échantillonnage aléatoire, ML-RRT pour le désassemblage d'objets articulés complexes. Cet algorithme repose sur la décomposition des paramètres de configuration en deux sous-ensembles actifs et passifs, qui sont traités de manière découplée. Les extensions proposées permettent de considérer plusieurs degrés de mobilité pour la partie passive, qui peut être poussée ou attirée par la partie active. Cet outil algorithmique a été appliqué avec succès pour l'étude des changements conformationnels de protéines induits lors de la diffusion d'un ligand. A partir de cette extension, nous avons développé une nouvelle méthode pour la résolution simultanée du séquençage et des mouvements de désassemblage entre plusieurs objets. La méthode, nommée Iterative-ML-RRT, calcule non seulement les trajectoires permettant d'extraire toutes les pièces d'un objet complexe assemblé, mais également l'ordre permettant le désassemblage. L'approche est générale et a été appliquée pour l'étude du processus de dissociation de complexes macromoléculaires en introduisant une fonction d'évaluation basée sur l'énergie d'interaction. Les résultats présentés dans cette thèse montrent non seulement l'efficacité mais aussi la généralité des algorithmes proposés. / Understanding and predicting structure-function relationships in proteins with fully in silico approaches remain today a great challenge. Despite recent developments of computational methods for studying molecular motions and interactions, dealing with macromolecular flexibility largely remains out of reach of the existing molecular modeling tools. The aim of this thesis is to develop a novel approach based on motion planning algorithms originating from robotics to better deal with macromolecular flexibility in protein interaction studies. We have extended a recent sampling-based algorithm, ML-RRT, for (dis)-assembly path planning of complex articulated objects. This algorithm is based on a partition of the configuration parameters into active and passive subsets, which are then treated in a decoupled manner. The presented extensions permit to consider different levels of mobility for the passive parts that can be pushed or pulled by the motion of active parts. This algorithmic tool is successfully applied to study protein conformational changes induced by the diffusion of a ligand inside it. Building on the extension of ML-RRT, we have developed a novel method for simultaneously (dis)assembly sequencing and path planning. The new method, called Iterative-ML-RRT, computes not only the paths for extracting all the parts from a complex assembled object, but also the preferred order that the disassembly process has to follow. We have applied this general approach for studying disassembly pathways of macromolecular complexes considering a scoring function based on the interaction energy. The results described in this thesis prove not only the efficacy but also the generality of the proposed algorithms
42

Nanopore Sensing Of Peptides And Proteins

2013 November 1900 (has links)
In recent years the application of single-molecule techniques to probe biomolecules and intermolecular interactions at single-molecule resolution has expanded rapidly. Here, I investigate a series of peptides and proteins in an attempt to gain a better understanding of nanopore sensing as a single-molecule technique. The analysis of retro, inversed, and retro-inversed isomers of glucagon and α-helical Fmoc-D2A10K2 peptide showed that nanopore sensing utilizing a wild-type α-hemolysin pore can distinguish between all four isomers while circular dichroism can only distinguish between chiral isomers, but not between directional isomers. The investigation of a series of proteins of different chemical and physical properties revealed important information about nanopore analysis of proteins. Contrary to some reports in the literature, all proteins analysed here induced large blockade events. The frequency of total events and the proportion of large blockade events were significantly reduced in tris(hydroxymethyl)aminomethane or 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid buffers and were only restored by the addition of ethylenediaminetetraacetic acid or the use of phosphate buffer, both of which can sequester metal ions. Furthermore, the results obtained with the proteins in the presence of ligands demonstrated that transient or partial unfolding of proteins can be detected by nanopore analysis confirming the usefulness of this technique for conformational studies or for protein/ligand interactions. Interestingly, while the blockade current histograms were different for each protein there was no obvious correlation between the properties of the proteins and the blockade current histograms. In an attempt to identify whether the large blockade events were translocation or intercalation, both an indirect and a direct approach were taken. The indirect approach which relies on the effect of voltage on the interaction of the molecule with the pore provided no conclusive answer to the question of protein translocation through the α-hemolysin pore. In contrast, the direct approach in which ribonuclease A is added to the cis side of the pore and then the trans side is tested for enzyme activity showed that ribonuclease A doesn't translocate through the α-hemolysin pore.
43

Development and Applications of Chemical Labeling Protocols for Protein-Ligand Binding Analysis Using Bottom-Up Proteomics

Xu, Ying January 2011 (has links)
<p>Proteins fold into well-defined three-dimensional structures to carry out their biological functions which involve non-covalent interactions with other cellular molecules. Knowledge about the thermodynamic properties of proteins and protein-ligand complexes is essential for answering fundamental biological questions and drug or biomarker discovery. Recently, chemical labeling strategies have been combined with mass spectrometry methods to generate thermodynamic information about protein folding and ligand binding interactions. The work in this thesis is focused on the development and application of two such chemical labeling protocols coupled with mass spectrometry including one termed, SUPREX (stability of unpurified proteins from rates of H/D exchange), and one termed SPROX (stability of proteins from rates of oxidation). The work described in this thesis is divided into two parts. The first part involves the application of SUPREX to the thermodynamic analysis of a protein folding chaperone, Hsp33, and its interaction with unfolded protein substrates. The second part involves the development of a new chemical labeling protocol that can be used to make protein folding and ligand binding measurements on the proteomic scale. </p><p>In the first part of this work, the SUPREX technique was used to study the binding interaction between the molecular chaperone Hsp33 and four different unfolded protein substrates including citrate synthase, lactate dehydrogenase, malate dehydrogenase, and aldolase. The results of the studies, which were performed at the intact protein level, suggest that the cooperativity of the Hsp33 folding/unfolding reaction increases upon binding with denatured protein substrates. This is consistent with the burial of significant hydrophobic surface area in Hsp33 when it interacts with its substrate proteins. The SUPREX derived Kd-values for Hsp33 complexes with four different substrates were also found to be all within a range of 3-300 nM. The interaction between Hsp33 and one of its substrates, citrate synthase (CS), was characterized at a higher structural resolution by using the SUPREX technique in combination with a protease digestion protocol. Using this protocol, the thermodynamic properties for both Hsp33 and CS were evaluated at different stages of binding, including reduced Hsp33 (inactive form), oxidized Hsp33 (active form), followed by native CS and finally of Hsp33ox -CS complexes before and after reduction with DTT. The results suggest that Hsp33 binds unfolded proteins that still have a significant amount of residual higher- order structure. Structural rearrangements of the substrate protein appear to occur upon reduction of the Hsp33-substrate complexes, which may facilitate the transfer of the substrate protein to other protein folding chaperone systems. </p><p>In the second part of this dissertation, a mass spectrometry-based covalent labeling protocol, which relies on the amidination rate of globally protected protein amine groups, was designed and applied to the thermodynamic analysis of several eight protein samples including: six purified proteins (ubiquitin, BCAII, RNaseA, 4OT, and lysozyme with, and without GlcNAc), a five-protein mixture comprised of ubiquitin, BCAII, RNaseA, Cytochome C, and lysozyme, and a yeast cell lysate. The results demonstrate that in ideal cases the folding free energies of proteins and the dissociation constants of protein-ligand complexes can be accurately evaluated using the protocol. Also demonstrated is the new method's compatibility with three different mass spectrometry-based readouts including an intact protein readout using MALDI, a gel-based proteomics readout using MALDI, and an LC-MS-based proteomics readout using isobaric mass tags. The results of the cell lysate sample analysis highlight the complementarity of the labeling protocol to other chemical modification strategies that have been recently developed to make thermodynamic measurements of protein folding and stability on the proteomic scale.</p> / Dissertation
44

Genome-scale identification of cellular pathways required for cell surface recognition

Sharma, Sumana January 2018 (has links)
A range of biochemically diverse molecules located in the plasma membrane— such as proteins, glycans, and lipids—mediate cellular recognition events, initiation of signalling pathways, and the regulation of processes important for the normal development and function of multicellular organisms. Interactions mediated by cell surface receptors can be challenging to detect in biochemical assays, because they are often highly transient, and membrane-embedded receptors are difficult to solubilise in their native conformation. The biochemical features of low-affinity extracellular protein interactions have therefore necessitated the development of bespoke methods to detect them. Here, I develop a genome-scale cell-based genetic screening approach using CRISPR-Cas9 knockout technology that reveals cellular pathways required for specific cell surface recognition events. Using a panel of high-affinity monoclonal antibodies, I first establish a method from which I identify not only the direct receptor but also other required gene products, such as co-receptors, post-translational modi cations, and transcription factors contributing to antigen expression and subsequent antibody-antigen recognition on the surface of cells. I next adapt this method to identify cellular factors required for receptor interactions for a panel of recombinant proteins corresponding to the ectodomains of cell surface proteins to the endogenous surface receptors present on a range of cell lines. In addition to finding general cellular features recognised by many ectodomains, I also identify direct interaction partners of recombinant protein probes on cell surfaces together with intracellular genes required for such associations. Using this method, I identify IGF2R as a binding partner for the R2 subunit of GABAB receptors, providing a mechanism for the internalisation and regulation of GABAB receptor signalling. The results here demonstrate that this single approach can identify the molecular nature and cell biology of surface receptors without the need to make any prior assumptions regarding their biochemical properties.
45

Analyse quantitative des perturbations de déplacement chimique pour la détermination de structures tridimensionnelles de complexes protéine-ligand / Quantitative analysis of chemical shift perturbations for the determination of protein-ligand complex tridimentional structures

Aguirre, Clémentine 31 October 2014 (has links)
Les interactions intermoléculaires entre une protéine et ses différents partenaires représentent des cibles de plus en plus prisées pour l'élaboration de composés thérapeutiques capables d'intervenir dans des processus biologiques. La méthode FBDD (Fragment-Based Drug Design) permet de concevoir des molécules bioactives tels que des inhibiteurs, à partir de la structure tridimensionnelle du complexe formé entre la protéine et une molécule fragment. Dans le cadre de ce projet de thèse nous proposons d'utiliser le déplacement chimique pour l'étude des structures 3D de ces complexes protéine-ligand. Nous nous focaliserons sur la mesure des perturbations de déplacement chimique CSP (Chemical Shift Perturbations) des atomes d'une protéine cible, induites par la liaison d'un fragment. Nous démontrerons la puissance de cet outil RMN à travers la simulation des CSP induits par l'interaction d'un fragment sur une protéine cible et leur comparaison aux CSP expérimentaux. L'analyse sera réalisée sur deux protéines cibles et la comparaison des données expérimentales et simulées permettra dans un premier temps de mettre en évidence un réarrangement structural de la protéine Bcl-xL lors de son interaction avec un fragment. Puis, dans un second temps, nous montrerons que cette analyse quantitative des CSP peut permettre de déterminer l'orientation des fragments dans le site d'interaction de la protéine PRDX5. Nous comparerons alors les performances de la méthode pour différents types de protons proposant ainsi de nouvelles pistes pour la compréhension du comportement des CSP vis-à-vis de leurs contributions électroniques / Intermolecular interactions between protein and its partners represent highly attractive targets for the elaboration of therapeutic compounds abble to interfere in biological processes. A novel approach in drug design called Fragment-Based Drug Design (FBDD) consists of designing bioactive molecules like inhibitors, from the 3D structure of the complex formed between a protein and a fragment molecule (MW < 300g/mol). Here we suggest using the chemical shift, to study these protein-ligand structures. We will particularly focus on the measurement of Chemical Shift Perturbations (CSP) induced by the fragment-binding on protein’s nuclei. We will evidence the potency of this NMR tool through simulation of CSP induced by fragment interaction on protein target and the comparison with experimental CSP. Two protein targets will be used and the comparison between experimental and simulated data will evidence on one hand, the structural rearrangement of the protein Bcl-xL upon fragment-binding. On the other hand, we will demonstrate that this quantitative use of CSP is unable to determinate fragment orientations inside the protein PRDX5 binding site. We will compare the performances of the method for different kinds of protein and proposing answers to better understand the behaviour of CSP toward their different electronic contributions
46

Molecular Mechanisms of Allosteric Inhibition in Cylic-Nucleotide Dependent Protein Kinases / Allosteric Inhibition in Protein Kinases

Byun, Jung Ah January 2020 (has links)
Allosteric inhibition of kinases provides high selectivity and potency due to lower evolutionary pressure in conserving allosteric vs. orthosteric sites. The former are regions distinct from the kinase active site, yet, when perturbed through allosteric effectors, induce conformational and/or dynamical changes that in turn modulate kinase function. Protein kinases involved in cyclic nucleotide signalling are important targets for allosteric inhibition due to their association with diseases, from infections to Cushing’s syndrome. This dissertation specifically focuses on elucidating the molecular mechanism of allosteric inhibition in the cAMP-dependent protein kinase (PKA) and the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG), which are targets for a generalized tumor predisposition commonly referred to as Carney Complex and for malaria, respectively. In chapters 2 and 3, we focus on the agonism-antagonism switch (i.e. allosteric pluripotency) observed as the phosphorothioate analog of cAMP, Rp-cAMPS (Rp), binds to PKA. Utilizing Nuclear Magnetic Resonance (NMR), Molecular Dynamics (MD) simulations and Ensemble Allosteric Model (EAM), we determined that two highly homologous cAMP-binding domains respond differently to Rp, giving rise to a conformational ensemble that includes excited inhibition-competent states. The free energy difference between this state and the ground inhibition-incompetent state is tuned to be similar to the effective free energy of association of the regulatory (R) and catalytic (C) subunits, leading to allosteric pluripotency depending on conditions that perturb the R:C affinity. The general significance of these results is a re-definition of the concept of allosteric target to include not only the isolated allosteric receptor, but also its metabolic and proteomic sub-cellular environment. In chapter 4, we utilize a mutant that silences allosteric pluripotency to reveal that the agonism-antagonism switch of PKA not only arises from the mixed response of tandem domains, but also from the mixed response of allosteric regions within a single domain that mediates interactions with Rp. In chapter 5, the allosteric inhibition of PfPKG associated with malaria is induced through base-modified cGMP-analogs and the underlying inhibitory mechanism is determined. We show that, when bound to a PfPKG antagonist, the regulatory domain of PfPKG samples a mixed intermediate state distinct from the native inhibitory and active conformations. This mixed state stabilizes key cGMP-binding regions, while perturbing the regions critical for activation, and therefore it provides an avenue to preserve high affinity, while promoting significant inhibition. Overall, in this thesis, previously elusive mechanisms of allosteric inhibition were elucidated through the combination of NMR, MD, and EAM methods. Through this integrated approach, we have unveiled an emerging theme of inhibitory ‘mixed’ states, either within a single domain or between domains, which offer a simple but effective explanation for functional allostery in kinases. / Thesis / Candidate in Philosophy
47

Riboswitch Drug Discovery: Identification and Characterization of T Box Antiterminator RNA Ligands as Potential Antibacterial Agents

Zhou, Shu 03 October 2011 (has links)
No description available.
48

Probing protein-small molecule interactions by Nuclear Magnetic Resonance : towards a better understanding of the Fragment-Based Drug Design methodology / Étude d’interactions protéines-petites molécules par Résonance Magnétique Nucléaire : application de la méthode des fragments à la conception d’inhibiteurs de protéine

Barelier, Sarah 20 October 2010 (has links)
La méthode de conception de médicaments à partir de molécules « fragments » (connue sous le nom de « Fragment-Based Drug Design ») a été proposée au milieu des années 90, et a depuis été reconnue comme une alternative tangible aux techniques plus classiques de recherche de médicaments telles que le criblage à haut débit par exemple. La méthode des fragments consiste à cribler un petit nombre (< 10000) de composés organiques de faible poids moléculaire (< 300 Da) afin de détecter ceux qui se lient à la cible (protéine ou acides nucléiques). Du fait de leur faible complexité, les fragments présentent une affinité faible pour la cible, et la détection s'effectue généralement grâce à une technique biophysique (en particulier, résonance magnétique nucléaire (RMN), cristallographie aux rayons X, résonance plasmonique de surface). Les fragments « hits » sont ensuite modifiés par addition de nouvelles fonctions chimiques, ou par liaison de deux fragments, afin d'élaborer, étape par étape, une molécule capable d'établir des interactions plus nombreuses avec la cible, et d'améliorer ainsi l'affinité. Comparée aux méthodes classiques de criblage haut débit, la méthode des fragments offre divers avantages, notamment une meilleure exploration de l'espace chimique, une meilleure efficacité de liaison des molécules « hits », et une plus grande facilité d'optimisation des hits en molécules plus affines. Dans le cadre de ce projet de thèse, plusieurs aspects de la méthode des fragments ont été abordés : dans une première partie, nous étudions un cas concret d'application de la méthode des fragments à la recherche d'un inhibiteur de la peroxiredoxine 5 humaine, en utilisant la RMN comme outil de criblage des fragments ainsi que comme outil d'étude des interactions protéine-fragment. La découverte d'un inhibiteur de cette enzyme représente une avancée importante, qui devrait permettre de mieux comprendre son fonctionnement. Les autres parties de ce projet de thèse abordent des aspects plus méthodologiques de la méthode des fragments : les fragments conservent-ils leur site de liaison, leur efficacité de liaison et leur mode d'interaction au cours de leur élaboration en inhibiteur ? Les fragments peuvent-ils être spécifiques d'une protéine ? D'un site de liaison particulier ? Ces questions, rarement traitées, sont pourtant essentielles à la compréhension du comportement des molécules fragments, et sont abordées d'une part en défragmentant plusieurs inhibiteurs de la protéine Bcl-xL et en étudiant par RMN le comportement de ces fragments vis-à-vis de la protéine en termes d'affinité et de site de liaison, d'autre part en réalisant le criblage par RMN d'une série de fragments sur cinq protéines différentes (peroxiredoxine 5 humaine, sérum albumine humaine et trois protéines homologues de la famille Bcl-2). De manière générale, ce projet de thèse vise à étudier des aspects peu abordés de la méthode des fragments et à proposer des pistes permettant de mieux comprendre le comportement des fragments vis-à-vis de leur cible, au cours du criblage initial comme lors de leur optimisation / Fragment-Based Drug Design (FBDD) has been proposed in 1996 and has since been recognized as a tangible alternative to the more classical drug discovery methods such as High-Throuput Screening. FBDD consists of screening a small number (< 10 000) of low-molecular weight (< 300 Da) compounds and detect those that bind to the target (protein or nucleic acids). Because of their low complexity, fragment molecules usually display low affinities for their target, hence detecting fragment-protein interactions is mostly achieved using a biophysical technique (mostly Nuclear Magnetic Resonance (NMR), X-ray crystallography or Surface Plasmon Resonance). “Hit” fragments are then modified by addition of chemical substituents, or linked together, so as to elaborate a more complex molecule, forming more interactions with the target and hence displaying an improved affinity. As compared to the more classical High Throughput Screening method, fragment screening provides several advantages, including a better exploration of chemical space, highly ligand-efficient hits and easier optimization of the hits into more affine molecules. In this PhD project, several aspects of FDBB have been addressed : first, FBDD approaches were applied to the research of an inhibitor of the human peroxiredoxin 5 protein, using NMR not only as a screening method but also for the characterization of the protein-fragment interactions. The discovery of an inhibitor against this enzyme would allow to better understand its function. Next, methodological aspects of the FBDD method were addressed : Do fragments conserve their binding site, binding efficiency and mode of interaction upon optimization? Can the fragments display specificity towards a given target? Towards a given binding site? These issues, rarely studied, are yet essential to the understanding of the behavior of fragment molecules, and will be addressed firstly by defragmentating several Bcl-xL inhibitors into fragments and studying their behavior towards the protein in terms of a_nity and binding mode, secondly by screening a set of fragments against five different proteins (human peroxiredoxin 5, human serum albumin and three homologous proteins of the Bcl-2 family of proteins). More generally, this PhD project aims at studying less characterized aspects of the fragment methodology and proposing answers to better understand the behavior of fragment molecules towards their targets, both in the initial screening step and then during their optimization
49

Discovery and Characterization of Novel ADP-Ribosylating Toxins

Fieldhouse, Robert John 20 December 2011 (has links)
This thesis is an investigation of novel mono-ADP-ribosylating toxins. In the current data-rich era, making the leap from sequence data to knowledge is a task that requires an elegant bioinformatics toolset to pinpoint questions. A strategy to expand important protein-family knowledge is required, particularly in cases in which primary sequence identity is low but structural conservation is high. For example, the mono-ADP-ribosylating toxins fit these criteria and several approaches have been used to accelerate the discovery of new family members. A newly developed tactic for detecting remote members of this family -- in which fold recognition dominates -- reduces reliance on sequence similarity and advances us toward a true structure-based protein-family expansion methodology. Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins identified and characterized using in silico and cell-based techniques. Medically relevant toxins from Mycobacterium avium and Enterococcus faecalis were also uncovered. Agriculturally relevant toxins were found in Photorhabdus luminescens and Vibrio splendidus. Computer software was used to build models and analyze each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. Yeast-based activity tests have since confirmed activity. Vibrio cholerae produces cholix – a potent protein toxin of particular interest that has diphthamide-specific ADP-ribosyltransferase activity against eukaryotic elongation factor 2. Here we present a 2.1Å apo X-ray structure as well as a 1.8Å X-ray structure of cholix in complex with its natural substrate, nicotinamide adenine dinucleotide (NAD+). Hallmark catalytic residues were substituted and analyzed both for NAD+ binding and ADP-ribosyltransferase activity using a fluorescence-based assay. These new toxins serve as a reference for ongoing inhibitor development for this important class of virulence factors. In addition to using toxins as targets for antivirulence compounds, they can be used to make vaccines and new cancer therapies. / Natural Sciences and Engineering Research Council (CGS-D), Canadian Institutes of Health Research, Cystic Fibrosis Canada, Human Frontier Science Program, Ontario government (OGSST), University of Guelph (Graduate Research Scholarship)
50

NMR and Biophysical Studies of Modular Protein Structure and Function

Chitayat, Seth 28 September 2007 (has links)
Proteins modularity enhances the multi-functionality and versatility of proteins by providing such properties as multiple and various ligand-binding sites, increased ligand affinity through the avidity effect, and the juxtaposition of ligand-binding modules near catalytic domains. An NMR-based "dissect-and-build" approach to studying modular protein structure and function has proven very successful, whereby modules are initially characterized individually and then correlated with the overall function of a protein. We have used the dissect-and-build approach and NMR to study two modular protein systems. Chapter 2 details the NMR solution structure of the weak-lysine-binding kringle IV type 8 (KIV8) module from the apolipoprotein(a) (apo(a)) component of lipoprotein(a) was determined and its ligand-binding properties assessed. In vitro studies have demonstrated the importance of the apo(a) KIV7 and KIV8 modules in mediating specific lysine-dependent interactions with the apolipoproteinB-100 (apoB-100) component of LDL in the initial non-covalent step of lipoprotein assembly. Notable differences identified in the lysine binding site (LBS) of the KIV8 were deemed responsible for the differential modes of apoB-100 recognition by KIV7 and KIV8. In addition, the KIV8 structure has brought to light the importance of an RGD sequence at the N-terminus of the apo(a) KIV8 module, which may mediate important apo(a)-integrin interactions. In Chapters 3-6, structure-function studies of the CpGH84C X82 and the CpGH84A dockerin-containing modular pair were conducted to understand how the varying modularity unique to the C-terminal regions of the secreted multi-modular family 84 glycoside hydrolases influences the spreading of Clostridium perfringens. Identification of a CpGH84C cohesin module (X82), and the structural characterization of a dockerin-containing modular pair provides the first evidence for multi-enzyme complex formation mediated by non-cellulosomal cohesin-dockerin interactions. The formation of large hydrolytic enzyme complexes introduces a novel mechanism by which C. perfringens may enhance its role in pathogenesis. / Thesis (Ph.D, Biochemistry) -- Queen's University, 2007-09-27 11:46:38.753

Page generated in 0.141 seconds