• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 27
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 114
  • 114
  • 34
  • 34
  • 32
  • 26
  • 26
  • 25
  • 25
  • 23
  • 18
  • 17
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of the hepatic LDL receptor

Moorby, Catriona Deborah January 1991 (has links)
No description available.
2

Mechanism of the antioxidant to prooxidant switch for dietary antioxidants when LDL becomes partially oxidised

Horsley, Elizabeth Teresa May January 2002 (has links)
No description available.
3

The role of metal ions in LDL peroxidation

Crabtree, Elaine January 1997 (has links)
No description available.
4

Analysis of Lipoprotein(a) Catabolism

Theuerle, James Douglas 27 September 2009 (has links)
Elevated plasma concentrations of lipoprotein(a) [Lp(a)] have been identified as an independent risk factor for vascular diseases including coronary heart disease and stroke. In the current study, we have examined the binding and degradation of recombinant forms of apolipoprotein(a) [r-apo(a)], the unique kringle-containing moiety of Lp(a), using a cultured cell model. We found that the incubation of human hepatoma (HepG2) cells with an iodinated 17 kringle-containing (17K) recombinant form of apo(a) resulted in a two-component binding system characterized by a high affinity (Kd = 12 nM), low capacity binding site, and a low affinity (Kd = 249 nM), high capacity binding site. We subsequently determined that the high affinity binding site on HepG2 cells corresponds to the LDL receptor. In the HepG2 cell model, association of apo(a) with the LDL receptor was shown to be dependent on the formation of Lp(a) particles from endogenous LDL. Using an apo(a) mutant incapable of binding to the high affinity site through its inability to form Lp(a) particles (17KΔLBS7,8), we further demonstrated that the LDL receptor does not participate in Lp(a) catabolism. The low affinity binding component observed on HepG2 cells, familial hypercholesterolemia (FH) fibroblasts and human embryonic kidney (HEK) 293 cells may correspond to a member(s) of the plasminogen receptor family, as binding to this site(s) was decreased by the addition of the lysine analogue epsilon-aminocaproic acid. The lysine-dependent nature of the low affinity binding site was further confirmed in HepG2 binding studies utilizing r-apo(a) species with impaired lysine binding ability. We observed a reduction maximum binding capacity for 17K r-apo(a) variants lacking the strong lysine binding site (LBS) in kringle IV type 10 (17KΔAsp) and the very weak LBS in kringle V (17KΔV). Degradation of Lp(a)/apo(a) was found to be mediated exclusively by the low affinity component on both HepG2 cells and FH fibroblasts. Fluorescence confocal microscopy, using the 17K r-apo(a) variant fused to green fluorescent protein, further confirmed that degradation by the low affinity component on HepG2 cells does not proceed by the activity of cellular lysosomes. Taken together, these data suggest a potentially significant route for Lp(a)/apo(a) clearance in vivo. / Thesis (Master, Biochemistry) -- Queen's University, 2009-09-26 02:15:50.754
5

The association of LDLR and PCSK9 variants with LDL-c levels in a black South African population in epidemiological transition / Tertia van Zyl

Van Zyl, Tertia January 2013 (has links)
Background Elevated concentrations of low-density lipoprotein cholesterol (LDL-c) are a major risk factor for the development of coronary artery disease (CAD) because of their role in the progression of atherosclerosis. The black South African population is known to have had historically low LDL-c and in the past there was almost no CAD in the population. However, as this population moves through the nutrition transition, LDL-c levels are increasing. LDL-c levels are regulated by the LDL receptors, which is the major protein involved with transporting cholesterol across cell membranes in humans. Proprotein convertase subtilisinlike/kexin type 9 (PCSK9) is another protein involved with the regulation of LDL-c through its role in assisting with the degradation of the LDL receptor. Variants in both genes can cause elevated or lowered LDL-c levels. Very little information is available on the frequency or presence of variants in the low-density lipoprotein receptor (LDLR) and PCSK9 gene in the black South African population and on how these variants associate with LDL-c. The main aim of the study was thus to determine novel and existing genetic variants in these two genes and to describe the manner in which they associate with plasma LDL-c levels in a black South African population undergoing an epidemiological transition. Methods The 2005 baseline data from the Prospective Urban and Rural (PURE) study population were used in this study. The study population consisted of apparently healthy black volunteers form the North West province of South Africa, aged 35 to 60 years. Thirty individuals were randomly chosen from the 1860 volunteers to determine the presence of known and novel variants in these genes by automated bidirectional sequencing. The promoter region, exons and flanking regions were sequenced and variants were identified utilising CLC DNA Workbench. Deoxyribonucleic acid (DNA) samples for 1500 individuals of the PURE study population were genotyped by means of a Golden Gate Genotyping Assay. Analyses of covariance (ANCOVA) were used to test for associations between the different genotypes in both the LDLR and PCSK9 genes and LDL-c levels. Haplotypes were generated by using the confidence intervals on the software programme, HaploView. A genetic risk score (GRS) was determined by including variants which associated significantly with LDL-c. The GRS, the haplotypes and the variants that associated significantly with LDL-c were used in separate linear regression models with variants which correlated with LDL-c to determine how all these variables contribute to the differences in LDL-c levels. Results and discussion Novel and known variants were identified in both the genes and in total 52 variants were genotyped. Rare variants such as rs17249141 and rs28362286 were detected in the study population and are associated with low levels of LDL-c. The variants identified in the LDLR gene were situated largely in regulatory regions such as the promoter, intron and 3‟untranslated regions. Haplotypes in the LDLR gene with the highest frequency associated with lower LDL-c levels, which could contribute to the study population‟s low mean LDL-c level. Haplotypes identified in the PCSK9 gene had a weaker association with LDL-c levels. The minor allele frequencies of many of the variants differed from those of the European population and therefore the importance of population-specific research cannot be sufficiently emphasised. The GRS, haplotypes and variants used in the regression models to determine whether they contributed to predicting the variance in LDL-c in the study population made a small contribution to explaining this. BMI best explained the variance in LDL-c levels. Older women with a body mass index (BMI)>25kg/m2 were identified as being at greater risk of developing elevated LDL-c levels than the rest of the study population. Heterozygote carriers of variant, rs28362286, had 0.787 mmol/L lower LDL-c than carriers of the wild type and this is associated with a reduced risk of developing CAD. Conclusion and recommendation When considering the results mentioned above, adding genetic analysis to explaining the variance in LDL-c levels seems to have its limitations, but the study included only two of many genes that play a role in the metabolism and regulation of LDL-c levels. Incorporating more genes and more variants into analyses and prediction models will add greater value to defining LDL-c levels. Rarer variants with a large impact on protein function, such as rs28362286, have a greater effect on LDL-c levels and could predict the variance better than the common variants. Risk factors such as BMI can also still be trusted to indicate which individuals or groups are at risk of developing elevated LDL-c levels. Health advice should be given to appropriate target groups such as older women with a BMI >25kg/m2 in order to prevent CAD from becoming a burden in this population. / PhD (Dietetics), North-West University, Potchefstroom Campus, 2014
6

The association of LDLR and PCSK9 variants with LDL-c levels in a black South African population in epidemiological transition / Tertia van Zyl

Van Zyl, Tertia January 2013 (has links)
Background Elevated concentrations of low-density lipoprotein cholesterol (LDL-c) are a major risk factor for the development of coronary artery disease (CAD) because of their role in the progression of atherosclerosis. The black South African population is known to have had historically low LDL-c and in the past there was almost no CAD in the population. However, as this population moves through the nutrition transition, LDL-c levels are increasing. LDL-c levels are regulated by the LDL receptors, which is the major protein involved with transporting cholesterol across cell membranes in humans. Proprotein convertase subtilisinlike/kexin type 9 (PCSK9) is another protein involved with the regulation of LDL-c through its role in assisting with the degradation of the LDL receptor. Variants in both genes can cause elevated or lowered LDL-c levels. Very little information is available on the frequency or presence of variants in the low-density lipoprotein receptor (LDLR) and PCSK9 gene in the black South African population and on how these variants associate with LDL-c. The main aim of the study was thus to determine novel and existing genetic variants in these two genes and to describe the manner in which they associate with plasma LDL-c levels in a black South African population undergoing an epidemiological transition. Methods The 2005 baseline data from the Prospective Urban and Rural (PURE) study population were used in this study. The study population consisted of apparently healthy black volunteers form the North West province of South Africa, aged 35 to 60 years. Thirty individuals were randomly chosen from the 1860 volunteers to determine the presence of known and novel variants in these genes by automated bidirectional sequencing. The promoter region, exons and flanking regions were sequenced and variants were identified utilising CLC DNA Workbench. Deoxyribonucleic acid (DNA) samples for 1500 individuals of the PURE study population were genotyped by means of a Golden Gate Genotyping Assay. Analyses of covariance (ANCOVA) were used to test for associations between the different genotypes in both the LDLR and PCSK9 genes and LDL-c levels. Haplotypes were generated by using the confidence intervals on the software programme, HaploView. A genetic risk score (GRS) was determined by including variants which associated significantly with LDL-c. The GRS, the haplotypes and the variants that associated significantly with LDL-c were used in separate linear regression models with variants which correlated with LDL-c to determine how all these variables contribute to the differences in LDL-c levels. Results and discussion Novel and known variants were identified in both the genes and in total 52 variants were genotyped. Rare variants such as rs17249141 and rs28362286 were detected in the study population and are associated with low levels of LDL-c. The variants identified in the LDLR gene were situated largely in regulatory regions such as the promoter, intron and 3‟untranslated regions. Haplotypes in the LDLR gene with the highest frequency associated with lower LDL-c levels, which could contribute to the study population‟s low mean LDL-c level. Haplotypes identified in the PCSK9 gene had a weaker association with LDL-c levels. The minor allele frequencies of many of the variants differed from those of the European population and therefore the importance of population-specific research cannot be sufficiently emphasised. The GRS, haplotypes and variants used in the regression models to determine whether they contributed to predicting the variance in LDL-c in the study population made a small contribution to explaining this. BMI best explained the variance in LDL-c levels. Older women with a body mass index (BMI)>25kg/m2 were identified as being at greater risk of developing elevated LDL-c levels than the rest of the study population. Heterozygote carriers of variant, rs28362286, had 0.787 mmol/L lower LDL-c than carriers of the wild type and this is associated with a reduced risk of developing CAD. Conclusion and recommendation When considering the results mentioned above, adding genetic analysis to explaining the variance in LDL-c levels seems to have its limitations, but the study included only two of many genes that play a role in the metabolism and regulation of LDL-c levels. Incorporating more genes and more variants into analyses and prediction models will add greater value to defining LDL-c levels. Rarer variants with a large impact on protein function, such as rs28362286, have a greater effect on LDL-c levels and could predict the variance better than the common variants. Risk factors such as BMI can also still be trusted to indicate which individuals or groups are at risk of developing elevated LDL-c levels. Health advice should be given to appropriate target groups such as older women with a BMI >25kg/m2 in order to prevent CAD from becoming a burden in this population. / PhD (Dietetics), North-West University, Potchefstroom Campus, 2014
7

Disialylated apolipoprotein C-III proteoform is associated with improved lipids in prediabetes and type 2 diabetes

Koska, Juraj, Yassine, Hussein, Trenchevska, Olgica, Sinari, Shripad, Schwenke, Dawn C., Yen, Frances T., Billheimer, Dean, Nelson, Randall W., Nedelkov, Dobrin, Reaven, Peter D. 05 1900 (has links)
The apoC-III proteoform containing two sialic acid residues (apoC-III2) has different in vitro effects on lipid metabolism compared with asialylated (apoC-III0) or the most abundant monosialylated (apoC-III1) proteoforms. Cross-sectional and longitudinal associations between plasma apoC-III proteoforms (by mass spectrometric immunoassay) and plasma lipids were tested in two randomized clinical trials: ACT NOW, a study of pioglitazone in subjects with impaired glucose tolerance (n = 531), and RACED (n = 296), a study of intensive glycemic control and atherosclerosis in type 2 diabetes patients. At baseline, higher relative apoC-(I)II2 and apoC-III2/apoC-III1 ratios were associated with lower triglycerides and total cholesterol in both cohorts, and with lower small dense LDL in the RACED. Longitudinally, changes in apoC-III2/apoC-III1 were inversely associated with changes in triglycerides in both cohorts, and with total and small dense LDL in the RACED. apoC-III2/apoC-III1 was also higher in patients treated with PPAR-gamma agonists and was associated with reduced cardiovascular events in the RACED control group. Ex vivo studies of apoC-III complexes with higher apoC-III2/apoC-III1 showed attenuated inhibition of VLDL uptake by HepG2 cells and LPL-mediated lipolysis, providing possible functional explanations for the inverse association between a higher apoC-III2/apoC-III1 and hypertriglyceridemia, proatherogenic plasma lipid profiles, and cardiovascular risk.
8

Καταγραφή μεταλλάξεων του γονιδίου LDL-R σε ασθενείς οικογενούς υπερχοληστερολαιμίας

Κοχλιάδη, Ιωάννα 26 July 2013 (has links)
Οικογενής Υπερχοληστερολαιμία (FH) είναι η επικρατής αυτοσωμική νόσος, κατά την οποία τα επίπεδα χοληστερόλης στο αίμα είναι αυξημένα, εμφανίζονται ξανθώματα και ένα αυτοσωμικό επικρατές χαρακτηριστικό για στεφανιαία αρτηριακή νόσος (CAD). Η FH προκαλείται από ανωμαλία στο γονίδιο LDL-R και κάποιες φορές και στο γονίδιο APOB (apolipoprotein B-100). Η ετεροζυγία του LDLR συναντάται σε αναλογία πληθυσμού 1:500. Πρόσφατα παρατηρήθηκε ότι και το γονίδιο PCSK9 (proprotein convertase subtilisin/kexin type 9) προκαλεί FH. Τα γονίδια APOB και PCSK9 αποκλείστηκαν από τη συγκεκριμένη έρευνα. Στόχοι της διατριβής ήταν (α) η καταγραφή των μεταλλάξεων του γονιδίου LDLR (Low Density Lipoprotein Receptor) σε 21 πληθυσμούς, (β) ο υπολογισμός της συχνότητας αυτών των μεταλλάξεων και (γ) η προσθήκη αυτών των δεδομένων σε μία γενετική βάση δεδομένων, την FINDbase, η οποία δίνει πληροφορίες για τη συχνότητα μιας μετάλλαξης σε κάθε χώρα καθώς και το φαρμακευτικό δείκτη της. Από τους 21 πληθυσμούς, οι 14 προέρχονταν από Ευρωπαϊκές χώρες (Ελλάδα, Γερμανία,Πορτογαλία, Τσεχία, Ολλανδία, Ισπανία, Βρετανία, Ιταλία, Πολωνία, Σουηδία, Γαλλία, Αυστρία, Βέλγιο και Δανία) και οι υπόλοιποι από την Κίνα, την Ιαπωνία, την Μαλαισία, το Λίβανο, τις Φιλιππίνες, την Ταϊβάν και το Καναδά. Τα δεδομένα των μεταλλάξεων σε κάθε πληθυσμό αντλήθηκαν από άρθρα (papers) μέσω της Βάσης Δεδομένων Pubmed και της μηχανής αναζήτησης Google. Τα άρθρα επιλέχθηκαν με βάση (1) το μέγεθος του δείγματος και (2) τη χρονολογία πραγματοποίησης της έρευνας στο συγκεκριμένο πληθυσμό. Η συχνότητα υπολογίστηκε σε σύνολο χρωμοσωμάτων, δηλαδή στο διπλάσιο του μεγέθους του δείγματος. Ως ιδανικό μέγεθος δείγματος θεωρήθηκε ένα σύνολο τουλάχιστον 100 χρωμοσωμάτων, δηλ. 50 άτομα. Η καταγραφή των δεδομένων έγινε σε λογιστικό φύλλο Excel. Τα αποτελέσματα έδειξαν ότι υπάρχει μεγάλη ανομοιογένεια σε επίπεδο μεταλλάξεων ανάμεσα στους 21 πληθυσμούς. / Familial hypercholesterolaemia (FH), defined as the heritable occurence of severe hypercholesterolaemia with cholesterol deposits in tendons and premature heart disease, is caused by at least four genes in sterol and lipoprotein pathways and displays varying gene-dose effects. The genes are the low-density lipoprotein (LDL) receptor, apolipoprotein (apo) B, proprotein convertase subtilisin/kexin 9, and the autosomal recessive hypercholesterolaemia (ARH) adaptor protein. The world-wide prevalence of FH is about 1 in 500 people. In this assessment, the genes apoB, PCSK9 and ARH have been excluded. The aim of this study was the recording of LDLR mutations in 21 populations, the calculation of the mutations’ frequencies in each population and the introduction of these data in the National Ethnic Mutation DataBase (NEΜDB), FINDbase, which gives information about a mutation’s frequency in each country and also about its pharmacogenomic marker. Among 21 populations, 14 were of European origin (Greece, Germany, Portugal, Czech Republic, Netherlands, Spain, Great Britain, Italy, Poland, Sweden, France, Austria, Belgium and Denmark) and the remainders from China, Japan, Malaysia, Lebanon, Philippines, Taiwan and Canada. The mutation data in each population were derived from papers through the database of references, PubMed and the search engine, Google. The selection of papers was based on (1) the size of patient group and (2) the date of paper publication. The calculation of mutation frequency was based on the total number of chromosomes, which was the double size of the patient group. An ideal size of sample was at least 100 chromosomes, which means 50 index patients. The data were inserted in an excel file. The results showed that there is a great ανομοιογένεια in mutation level among 21 populations.
9

7,8-Dihydroneopterin-mediated protection of low density lipoprotein, but not human macrophages, from oxidative stress

Firth, Carole Anne January 2006 (has links)
Any lipoproteins and cells present in the inflammatory environment of atherosclerotic plaques are likely to be exposed to high levels of oxidative stress. As 7,8-dihydroneopterin (7,8-NP) is synthesized by interferon-γ (IFN-γ)-activated macrophages, this pteridine is also thought to exist at sites of inflammation. 7,8-NP s in vivo role remains controversial, but numerous in vitro studies have identified a radical scavenging activity. The possibility of 7,8-NP protecting against oxidative damage in inflammatory environments like plaque was investigated in this thesis. Both human monocyte-derived macrophages (HMDMs) and low density lipoprotein (LDL) were used as substrates. The extent of protein hydroperoxide formation in each model, and 7,8-NP s effect on this process, were specifically studied since most previous research has focussed on lipid rather than protein peroxidation. For the first time, neopterin (including oxidized 7,8-NP) was also directly detected by high performance liquid chromatography in the inflammatory environments of 19 pus and two atherosclerotic plaque samples. Peak concentrations even reached the low micromolar range. The positive correlation identified in the pus between neopterin and a well known antioxidant, vitamin E, further hinted at a potential antioxidant function. However, no significant association was noted between neopterin and markers of protein or lipid oxidation. Exposure of HMDMs to the AAPH peroxyl radical generator resulted in significant quantities of lipid hydroperoxides but not protein hydroperoxides, as detected by the FOX assays. This is likely due to the large accumulation of polyunsaturated fatty acidrich lipid in the primary HMDMs during differentiation in 10% human serum and is of relevance to atherosclerotic plaque, where macrophages also become lipid-loaded. The addition of up to 200μM 7,8-NP failed to prevent AAPH-induced lipid peroxidation and was also unable to inhibit a loss of cellular thiols or viability. This lack of effect suggests the damaging peroxyl radicals are not being scavenged by 7,8-NP. The high lipid content of HMDM cells appears to cause the AAPH and/or 7,8-NP to localize to a cellular site, where they are unable to interact. Macrophage-mediated oxidation of LDL in iron(II)-supplemented Hams F10 was associated with the formation of 30-40 moles of protein hydroperoxides per mole of LDL. The close parallel between protein and lipid peroxidation supports the theory that lipid-derived radicals are involved in protein hydroperoxide formation on LDL and indicates that protein hydroperoxides are an early product of LDL oxidation. Their detection during exposure of LDL to both the THP-1 macrophage cell line and primary HMDM cells confirms that protein hydroperoxides are also a normal consequence of macrophage-mediated LDL oxidation. Incubation of LDL with micromolar 7,8-NP prevented macrophage-mediated protein hydroperoxide formation in a concentration-dependent manner. Lipid oxidation and vitamin E loss were similarly inhibited by 7,8-NP during the cell-mediated attack of LDL. Kinetic analysis revealed protection due to extension of the lag phase, with 7,8-NP depletion and initiation of the propagation phase coinciding. This supports a radical scavenging activity for 7,8-NP, resulting in protection of the entire LDL particle. By contrast, the release of nanomolar quantities of 7,8-NP by IFN-γ-stimulated THP-1 macrophages failed to prevent LDL oxidation. HMDMs activated by IFN-γ did significantly inhibit LDL oxidation, including protein hydroperoxide formation, for up to 48 hours but this antioxidant effect was not due to the de novo synthesis of 7,8-NP. These results indicate that both the prevalence of protein hydroperoxides, and the ability of 7,8-NP to act as an antioxidant, depend on the system under investigation. Neopterin exists in inflammatory environments but, considering the lack of protection against AAPH-mediated HMDM oxidation and the 7,8-NP concentration required to inhibit macrophage-mediated LDL oxidation, strong evidence for an antioxidant activity of 7,8-NP in atherosclerotic plaque is currently lacking.
10

Efeito da imunização passiva com fragmentos variáveis de cadeia única anti-LDL eletronegativa na aterosclerose experimental / Passive immunization effect with anti-electronegative LDL single chain fragments variable in experimental atherosclerosis

Cavalcante, Marcela Frota 04 October 2012 (has links)
A aterosclerose é uma doença crônico-inflamatória multifatorial com o envolvimento do sistema imunológico, sendo o resultado da interação de diferentes elementos celulares. A lipoproteína de baixa densidade eletronegativa [LDL(-)], capaz de induzir o acúmulo de ésteres de colesterol em macrófagos e a subsequente formação de células espumosas, desempenha um papel-chave na doença. Anticorpos recombinantes têm sido gerados nas últimas décadas, como o scFv (single chain fragment variable), com o intuito de serem utilizados como uma novas alternativas de prevenção para o surgimento da lesão. Diante do papel da LDL(-) na aterosclerose, este projeto avaliou o efeito da imunização passiva de camundongos LDLr-/-- com scFv anti-LDL(-) em solução e scFv anti-LDL(-) conjugado a nanocápsulas, em relação ao desenvolvimento e progressão da aterosclerose. Após obtenção do scFv e sua conjugação à nanocápsulas (NC-scFv), ensaios in vitro determinaram a diminuição da captação de LDL(-) em macrófagos tratados com o scFv 2C7 anti-LDL(-) em solução. No entanto, o tratamento com NC-scFv promoveu o aumento da internalização de LDL(-) em relação ao controle, possivelmente por um mecanismo de endocitose mediada por receptor específico. Estudos in vivo determinaram que camundongos LDLr-/- com idade entre 2 e 3 meses tratados com o scFv em solução apresentaram menor área de lesão aterosclerótica (p<0,05) quando comparados ao controle e que animais com 3 a 4 meses de idade tratados com NC-scFv demonstraram uma tendência à diminuição do mesmo parâmetro. Na análise da expressão de proteínas por imunohistoquímica, ambos os grupos tratados com scFv 2C7 anti-LDL(-) em solução e NC-scFv demostraram redução significativa da expressão dos receptores CD14 e TLR-4 no local da lesão. Esse achado tem grande importância, uma vez que dados da literatura apresentam ambos os receptores como possíveis candidatos ao reconhecimento da LDL(-). Diante dos dados obtidos, o estudo evidenciou a eficácia do scFv 2C7 anti-LDL(-) em solução e da formulação NC-scFv no contexto da aterosclerose, possibilitando a sua utilização como estratégias terapêuticas na intervenção precoce para prevenir o desenvolvimento e a progressão da doença. / Atherosclerosis is a chronic inflammatory multifactorial disease related to the immune system and being the result of interaction of different cellular elements. The electronegative LDL, since the changes undergone by this particle are able to induce the accumulation of cholesterol esters in macrophages and the subsequent formation of foam cells, plays a key role in atherosclerosis. Recombinant antibodies have been generated in recent decades, such as scFv, (single chain fragment variable), and they may be used as a new alternative treatment for atherosclerosis treatment or prevention. Considering the role of LDL(-) in atherosclerosis, this project evaluated the effects of the treatment with anti-LDL(-) scFv 2C7 solution and anti-LDL(-) scFv conjugated to nanocapsules as a passive immunization strategy on atherosclerosis induced in LDL receptor knockout mice. After obtaining the anti-LDL(-) scFv 2C7 solution and its conjugation to nanocapsules (NC-scFv), in vitro tests led to the decrease in LDL(-) uptake in macrophages treated with anti-LDL(-) scFv 2C7. However, the treatment of macrophages with NC-scFv promoted increased internalization of LDL(-) as compared to control, possibly due to a mechanism of specific receptor-mediated endocytosis. In vivo studies have determined that LDLR-/- mice aged 2 and 3 months treated with anti-LDL(-) scFv 2C7 solution showed less atherosclerotic lesion area (p <0.05) compared to control and animals aged 3 to 4 months treated with NC-scFv showed a decreasing tendency of the same parameter. In the analysis of protein expression by immunohistochemistry, both groups treated with anti-LDL(-) scFv 2C7 solution and NC-scFv showed significant reduction of CD14 receptor expression and TLR-4 at the lesion site. This finding is of great importance, since the literature has both receptors as candidates for recognition of the LDL(-). From the data obtained, the study demonstrated the efficacy of treatments anti-LDL(-) scFv 2C7 in solution and NC-scFv in the context of atherosclerosis, enabling their use as therapeutic strategies in the early intervention to prevent the development and progression of the disease.

Page generated in 0.0982 seconds