• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 50
  • 38
  • 32
  • 21
  • 16
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Kinetoplastid RNA editing ligases : functional analysis and editosome association /

Palazzo, Setareh Seraji. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 164-175).
42

A regulatory mechanism for Rsp5, a multifunctional ubiquitin ligase in Saccharomyces cerevisiae: characterization of its interaction with a deubiquitinating enzyme

Kee, Younghoon 28 August 2008 (has links)
Not available
43

The intracellular localization of mammalian DNA ligase I

Barker, Sharon. January 1996 (has links)
DNA replication is cruciaI for the transmission of genetic information. Understanding the enzymology involved in this complex process will allow further insight into its mechanism. Experimental evidence indicates a role for DNA ligase I in DNA replication. Techniques of molecular and cellular biology and immunology were utilized in this study to further investigate DNA ligase I and clarify its involvement and interaction with other proteins in DNA replication. Immunofluorescence studies were performed to examine the intracellular distribution of DNA ligase I. Confocal analysis of indirect immunofluorescence detection of DNA ligase I using affinity purified anti-human DNA ligase I antibodies showed nuclear localization of DNA ligase I in distinct foci resembling those structures seen in detection of centres of DNA replication and other DNA replication proteins. Immunoprecipitation experiments were performed on extracts of MDBK cells to examine possible interactions of DNA ligase I with the DNA replication cofactor, PCNA; and no interactions were detected.
44

Molecular genetics of biotin-dependent enzymes : mutation analysis, expression and biochemical studies

Campeau, Eric. January 1999 (has links)
Biotin is a water soluble vitamin that is mainly used as a cofactor in carboxylation reactions by a class of enzyme known as biotin-dependent carboxylases. In order to act as a cofactor, the biotin molecule has to be covalently attached to a lysine residue by an enzyme called holocarboxylase synthetase (HCS). Inherited deficiency of the biotin-dependent propionyl-CoA carboxylase (PCC) results in the inborn error of metabolism propionic acidemia. Mutations in either the alpha (PCCA gene) or beta (PCCB gene) subunit of the enzyme have been shown to cause propionic acidemia. Mutation analysis of the PCCB gene have revealed several mutations. However, few PCCalpha mutations have been described. The first goal of this thesis was to determine the molecular etiology of alpha subunit deficiency at the mRNA as well as at the protein level. I found that most mutations destabilized either the mRNA or the protein. Two other mutations were found to affect the biotinylation of PCCalpha, defining residues important for the folding of the domain or for interaction with HCS. The second part of my thesis was to study in more details the interactions between HCS and the biotinylation domain of PCCalpha, represented by the last 67 amino acids of the subunit (p-67). I expressed and purified p-67 from Pichia pastoris. I compared p-67 with the E. coli biotinylation domain (BCCP87) as substrates for the E. coli orthologous enzyme BirA, using steady-state as well as stopped-flow kinetics. I noticed some differences between these two substrates and how it might relate to the biotinylation reaction. I generated N-terminal and C-terminal deletions of HCS and I tested their activity in vivo and in vitro using purified susbtrates. I was able to map the minimal sequence requirement for HCS activity to the last 348 amino acids of the enzyme. I also found that some longer HCS were either almost or totally inactive or some that were active showed a differential activity towards the different susb
45

Molecular genetics of holocarboxylase synthetase deficiency

Léon Del Rio, Alfonso January 1995 (has links)
The objective of this thesis was to determine the molecular basis of neonatal multiple carboxylase deficiency (MCD) produced by an impairment in holocarboxylase synthetase (HCS) activity and the origin of the biotin-responsiveness that characterizes this disease. To determine HCS activity, I developed a peptide substrate and used the biotinylation system of E: coli to determine its properties. C-terminal fragments of the $ alpha$ subunit of human propionyl-CoA carboxylase (PCC-$ alpha$) were expressed in E. coli and site-directed mutagenesis was used to define the residues required for biotinylation by the bacterial biotin ligase, BirA. These experiments showed that the biotin region of PCC-$ alpha$ can act as an autonomous domain for biotinylation and suggested its use as substrate for human HCS. For the molecular characterization of MCD, I isolated several cDNA clones encoding human HCS by functional complementation of an E. coli mutant with a temperature-sensitive BirA. Comparison of the predicted amino acid sequence of HCS with bacterial biotin ligases allowed the identification of the putative biotin-binding domain of this protein. Mutation analysis of DNA from HCS deficient patients showed that most of the changes in the HCS sequence are clustered in the biotin-binding domain. All the patients tested in this study showed deficiency of HCS activity as determined using the PCC-$ alpha$ peptide as substrate for biotinylation. The biotin-responsiveness was demonstrated by obtaining a stimulation of HCS activity of MCD cells at high biotin concentrations while remaining unstimulated in extracts of normal cells. Together with the mutation studies, these results showed that neonatal MCD is caused by mutations in the biotin binding domain of HCS which reduce the affinity of the enzyme towards biotin. This change in the kinetic properties of HCS results in the inefficient biotinylation of carboxylases at physiological concentrations of biotin. The defect can be over
46

The Doa10 ubiquitin ligase can target proteins that aberrantly engage the endoplasmic reticulum translocon in Saccharomyces cerevisiae

Lloyd, Michael E. 20 July 2013 (has links)
Access to abstract permanently restricted. / Access to thesis permanently restricted. / Department of Biology
47

ENU mouse mutant with a hypomorphic mutation in DNA ligase IV

Nijnik, A. January 2006 (has links)
No description available.
48

Molecular basis of biotin-responsive multiple carboxylase deficiency

Dupuis, Lucie. January 1996 (has links)
Multiple carboxylase deficiency (MCD) results from a decreased activity of holocarboxylase synthetase (HCS) which is responsible for the biotinylation of the four biotin-dependent carboxylases found in humans. The disease can be treated with pharmacologic doses of oral biotin (biotin-responsiveness). The cDNA for HCS contains a biotin-binding domain deduced by analogy with the sequence and crystal structure of the E. coli BirA biotin ligase. E. coli birA$ sp-$ mutations causing biotin-auxotrophy all localize to this region. Of six point mutations I have identified in MCD patients, four localize to the biotin-binding region. In order to assess the HCS activity associated with patient mutations, I used an assay based on the expression of mutant HCS in E. coli. The method is based on the ability of mutant HCS to biotinylate the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase in a temperature-sensitive birA$ sp-$ E. coli strain using 3H-biotin as tracer. I have shown that all of the mutations cause a severe decrease in HCS activity. In addition, I have shown that five of the mutant HCS are biotin-responsive. These findings are a major contribution to the understanding of the mechanism of biotin-responsiveness.
49

The intracellular localization of holocarboxylase synthetase /

Dumas, Richard. January 1999 (has links)
Holocarboxylase synthetase (HCS) catalyzes the biotinylation of three mitochondrial and one cytosolic forms of biotin-dependent carboxylases in humans. Patients suffering from this autosomal recessive disease have Multiple Carboxylase Deficiency (MCD) with symptoms of life-threatening metabolic acidosis which, in almost all cases, can be successfully treated with pharmacologic doses of oral biotin. Patients with HCS deficiency lack activity of all four carboxylases, indicating that a single HCS maybe targeted to the cytoplasm and mitochondria or that carboxylases are biotinylated in the cytoplasm prior to import into the mitochondria. In order to resolve the compartmentalization of HCS, 5' HCS cDNA sequences have been examined for a targeting signal and a candidate sequence was tested for its capacity to target mitochondria. Analysis of 5' cDNA reveals complex alternative splicing, none of which appear to contain mitochondrial targeting sequences. In addition, antibodies have been developed in order to perform immunochemical analysis of the subcellular distribution of HCS. Polyclonal antisera were raised against full length HCS as well as two peptides corresponding to a 20 amino acid region in the N-terminus and to the 20 amino acids preceding the stop codon. Immunohistochemical staining of human fibroblasts with the antibody to full length HCS gives cytosolic, mitochondrial and nuclear localization. Interestingly, analysis with the N-terminal antiserum reveals a large punctate staining pattern exclusively localized to the nucleus. The corresponding C-terminal antiserum reveals solid nuclear staining with some mitochondrial co-localization. Taken together, these results indicate the ubiquitous nature of HCS in human cells and also allude to a potential role for HCS in the nucleus of human cells.
50

The characterization of the subcellular localization of bile acid CoA:N-acyltransferase

Styles, Nathan Allen. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed Feb. 7, 2008). Includes bibliographical references (p. 114-133).

Page generated in 0.0836 seconds