• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 50
  • 38
  • 32
  • 21
  • 16
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mismatch ligation during non-homologous end joining pathway kinetic characterization of human DNA ligase IV/XRCC4 complex /

Wang, Yu. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Full text release at OhioLINK's ETD Center delayed at author's request
12

An analysis of vaccinia virus DNA ligase

Odell, Mark January 1996 (has links)
No description available.
13

Mass spectrometric studies of asparagine synthetase and its role in the drug-resistant form of acute lymphoblastic leukemia

Abbatiello, Susan E. January 2006 (has links)
Thesis (Ph. D.)--University of Florida, 2006. / Title from title page of source document. Document formatted into pages; contains 227 pages. Includes vita. Includes bibliographical references.
14

The Parkin-like ubiquitin E3 ligase Ariadne-1 in the mammalian brain potential implications for neurodegenerative disease /

Cadena, Juan G., January 2009 (has links)
Thesis (Ph. D.)--University of Massachusetts Amherst, 2009. / Open access. Includes bibliographical references (p. 100-112). Print copy also available.
15

Mya arenaria (softshell clam) gonadal tumor formation : identification and characterization of an E3 ubiquitin-protein ligase and its possible role in tumorgenesis /

Kelley, Melissa L., January 2001 (has links)
Thesis (Ph. D.) in Biochemistry and Molecular Biology--University of Maine, 2001. / Includes vita. Includes bibliographical references (leaves 97-113).
16

THE EFFECTS OF A TEMPERATURE-SENSITIVE LIGASE ON MUTAGENESIS IN BACTERIOPHAGE-T4

Wilson, Lois Bleicher, 1947- January 1974 (has links)
No description available.
17

Discrimination of RNA versus DNA by an RNA ligase and distinct modes of substrate recognition by DNA ligases /

Nandakumar, Jayakrishnan. January 2007 (has links)
Thesis (Ph. D.)--Cornell University, May, 2007. / Vita. Includes bibliographical references (leaves 324-341).
18

Regulation and effects of IRF-1 and p53 ubiquitination

Landré, Vivien January 2013 (has links)
Protein ubiquitination is a key regulator of both protein stability and activity, and is involved in the regulation of a vast variety of cellular pathways. The ubiquitination system therefore provides an exciting target for drug development aiming to regulate the function of specific proteins. Our understanding of ubiquitin signalling is far from complete; and if we are to exploit this system for the benefit of human health, it is important to gain a better understanding of this complex posttranslational modification system as well as the effect of ubiquitination on the target protein. The E3 ligases MDM2 and CHIP were implicated in the control of the two transcriptional activators (TAs) IRF-1 and p53, that normally function to maintain health at the cellular and organismal level. Research carried out as part of my PhD has focused on gaining a mechanistic understanding of the ubiquitination process in particular the relationship between the E3 ligase and its substrate. Broadly, the mechanisms of E3 ligase regulation have been linked to substrate specificity and then to the physiological outcome of site-specific ubiquitination of the DNA binding domain of the TAs IRF-1 and p53. More specifically I have; (i) identified a mechanism by which the E3 ligase activity of the CHIP U-box can be allosterically regulated by ligand binding to its TPR domain. (ii) Residues on IRF-1 that are targeted by MDM2 and CHIP have been mapped, revealing that both ligases modify sites exclusively in IRF-1's DNA binding domain (DBD). Furthermore, I showed that, in its DNA bound conformation, IRF-1 is neither bound nor ubiquitinated by the ligases, suggesting a mechanism by which IRF-1 ubiquitination and possibly degradation can be regulated through its DNA binding state. And lastly, (iii) I have shown that both IRF-1 and p53, which have ubiquitin acceptor lysines in their DBD, bind DNA more stably when ubiquitinated. Modelling suggests that interactions between a positively charged surface area of ubiquitin and the negatively charged DNA can stabilises the TA-ubiquitin complex. DBD ubiquitination sites are required for full transactivation potential of both TAs, supporting a role of ubiquitin in their activation. p53 is ubiquitinated in response to activation by IR or Nutlin-3 and these ubiquitinated forms of p53 are localised in the cell nucleus associated with chromatin and do not lead to protein degradation. Taken together, the data imply that p53 and IRF-1 DNA binding ability, and thereby activity, can be modulated by ubiquitin modification.
19

Characterization of the E3 Ubiquitin ligase EEL-1 in DNA Damage-induced Germ Line Apoptosis in C. elegans

Ross, Ashley Jane 28 July 2010 (has links)
E3 ubiquitin ligases are important regulators of several cellular processes, including apoptosis. To determine the extent to which E3 ligases regulate DNA damage-induced apoptotic signalling in C. elegans, a high-throughput RNAi screen was performed in our laboratory. We identified the E3 ubiquitin ligase EEL-1 as a positive regulator of DNA damage-induced germ cell apoptosis. ARF-BP1, the mammalian EEL-1 ortholog, negatively regulates both the tumour suppressor protein p53 and the anti-apoptotic protein Mcl-1. In C. elegans, we found that eel-1 regulates DNA damage-induced germ cell apoptosis by a mechanism downstream of cep-1/p53 and upstream of ced-9/mcl-1. My results show that unlike ARF-BP1, EEL-1 does not regulate CED-9/Mcl-1 protein levels, suggesting a novel mechanism of apoptosis regulation in C. elegans for this E3 ligase. Unexpectedly, eel-1 causes synthetic sterility in ced-9 loss-of-function mutants that is suppressed by ablation of the Apaf-1 orthologue ced-4, suggesting an additional role for these genes in oogenesis.
20

Characterization of the E3 Ubiquitin ligase EEL-1 in DNA Damage-induced Germ Line Apoptosis in C. elegans

Ross, Ashley Jane 28 July 2010 (has links)
E3 ubiquitin ligases are important regulators of several cellular processes, including apoptosis. To determine the extent to which E3 ligases regulate DNA damage-induced apoptotic signalling in C. elegans, a high-throughput RNAi screen was performed in our laboratory. We identified the E3 ubiquitin ligase EEL-1 as a positive regulator of DNA damage-induced germ cell apoptosis. ARF-BP1, the mammalian EEL-1 ortholog, negatively regulates both the tumour suppressor protein p53 and the anti-apoptotic protein Mcl-1. In C. elegans, we found that eel-1 regulates DNA damage-induced germ cell apoptosis by a mechanism downstream of cep-1/p53 and upstream of ced-9/mcl-1. My results show that unlike ARF-BP1, EEL-1 does not regulate CED-9/Mcl-1 protein levels, suggesting a novel mechanism of apoptosis regulation in C. elegans for this E3 ligase. Unexpectedly, eel-1 causes synthetic sterility in ced-9 loss-of-function mutants that is suppressed by ablation of the Apaf-1 orthologue ced-4, suggesting an additional role for these genes in oogenesis.

Page generated in 0.0231 seconds