461 |
Study of lignin redeposition onto pulp fibres during brown stock washing operations / Studie av ligninåterdeponering på pappersmassafibrer under brunmassatvättningSuarez, Maria January 2024 (has links)
Med den ökande trenden av process slutning inom massabruken, så har det indikerats att återvinningen av tvättvätska från de olika tvättsteg troligen resulterar i negativa effekter. Närvaron av olika komponenter kan påverka upplösningen av lignin genom att främja dess återdeponering på massan, och därmed påverka senare steg inom bruket. Denna studie fokuserade på effekten av tvättvätskes sammansättningen, pH och magnesiumjoners innehållet på ligninåterfästningen till fibrerna under brunmassatvätt. Projektets syfte var att finna nya relevanta insikter för dagens verksamheter. För den experimentella proceduren blandades massa- och vätskaprover erhållna från ett barrveds-sulfatmassabruk, relevanta lösningsmodifikationer genomfördes, och dessa placerades i ett vattenbad vid 90 °C. Därefter tvättades och separerades den resulterande blandningen. Kappatal och ISO-ljusstyrka användes för massakaraktärisering, samt UV-VISspektroskopi för tvättvätskor. En ytterligare procedur med alkalisk urlakning utfördes på massan för att identifiera den relativt svaga liginbindningen. Resultaten indikerade att högre ligninhalt och konduktivitet, lägre pH och högre MgSO4 koncentration i tvättvätskor ökar lignininnehållet i massan. Under proceduren identifierades en möjlig konkurrens mellan borttagningen av lignin från fibrerna och återfällningen. Genom att uföra studier på olika bruksvätskor, så påverkades flera variabler systemet samtidigt, vilket förhindrade identifikationen av den dominerande variabeln som potentiellt kunde justeras för att minska återdeponeringen. Det observerades dock att en tillsatts av NaOH i tvättvätskor kunde reducera lignininnehållet i massan, medans däremot en ökning av MgSO4 kunde ha negativa effekter. / With the growing tendency of process closure within pulp mills, recycling liquors into different washing stages was observed to result in likely negative effects. The presence of different components may affect lignin dissolution, by promoting its redeposition onto pulp therefore affecting later stages in the mill. The present study focused on the effect of washing liquor composition, pH, and magnesium ions content on lignin reattachment to fibres during brown stock washing. This project’s motivation was to provide new insights relevant for today’s operations. For the experimental procedure, pulp and liquor samples obtained from a softwood kraft pulp mill were mixed, relevant solution modifications were performed, and these were set inside a water bath at 90 °C. Then, the resulting mixture was washed and separated. Kappa number and ISO brightness were employed for pulp characterization, and UV-VIS spectroscopy for washing liquors. An additional procedure of alkaline leaching was performed on pulp to identify relatively weak lignin attachment. Obtained results indicated that higher lignin content and conductivity, lower pH and higher MgSO4 concentration in washing liquors increase the lignin content in pulp. A competition between lignin removal from fibres and reattachment was identified to be possibly occurring during the procedure. By performing studies on different mill liquors, multiple variables affected the system simultaneously, which hinders the identification of the dominant variable to be potentially adjusted for reducing the redeposition. However, it was seen that adding NaOH in washing liquors could reduce lignin content in the pulp, whereas an increase in MgSO4 could present negative effects.
|
462 |
Lignin as a mechanism of field resistance to Phytophthora rot in soybeansCurry, Joseph Timothy. January 1984 (has links)
Call number: LD2668 .T4 1984 C87 / Master of Science
|
463 |
The initial phase of the sodium bisulfite pulping of softwood dissolving pulpDeshpande, Raghu January 2015 (has links)
The sulfite pulping process is today practised in only a small number of pulp mills around the globe and the number of sulfite mills that use sodium as the base (cation) is less than five. However, due to the increasing interest in the wood based biorefinery concept, the benefits of sulfite pulping and especially the sodium based variety, has recently gained a lot of interest. It was therefore considered to be of high importance to further study the sodium based sulfite process to investigate if its benefits could be better utilized in the future in the production of dissolving pulps. Of specific interest was to investigate how the pulping conditions in the initial part of the cook (≥ 60 % pulp yield) should be performed in the best way. Thus, this thesis is focused on the initial phase of single stage sodium bisulfite cooking of either 100 % spruce or 100 % pine wood chips. The cooking experiments were carried out with either a lab prepared or a mill prepared cooking acid and the temperature and cooking time were varied. Activation energies for different wood components were investigated as well as side reactions concerning the formation of thiosulfate and sulfate. / Single stage sodium bisulfite cooking was carried out on either spruce or pine wood chips to investigate the influence of several process parameters in the initial phase of such a cook i.e. between 100 % and 60 % pulp yield. The cooking experiments were carried out with either a lab prepared or a mill prepared cooking acid and the temperature and time in the initial stage were varied. The influence of dissolved organics and inorganics components in the cooking liquor on the final pulp properties and side reactions were investigated. The impact of temperature and time on the pulp components were analyzed with respect to carbohydrates, lignin, extractives and thiosulfate. Kinetic equations were developed and the activation energies for delignification and carbohydrate dissolution were calculated using the Arrhenius equation. It was found that if using a mill prepared cooking acid, this had a beneficial effect with respect to side reactions, better extractives removal and higher pH stability during the cook, compared to a corresponding cook with a lab prepared cooking acid. Cooking with mill prepared and lab prepared cooking acids showed the same behaviour with respect to delignification and carbohydrate degradation, but the lab acid experiments resulted in a higher thiosulfate formation during the cook. The cellulose yield was not affected at all during the initial phase of the sulfite cook verifying earlier results by other researchers. The temperature had an influence on both the delignification rate and the rate of hemicelluloses removal. The corresponding activation energies were found to increase in the following order; cellulose, xylan, glucomannan and lignin. / <p>Artikel 1: "The Initial Phase of Sodium Bisulfite Pulping of Spruce: Part 1" ingick i avhandlingen som manuskript. Nu publicerad.</p>
|
464 |
TOWARDS CATALYTIC OXIDATIVE DEPOLYMERIZATION OF LIGNINMobley, Justin K. 01 January 2016 (has links)
Lignin is one of the most abundant and underutilized biopolymers on earth. Primarily composed on three monolignol units (sinapyl, coniferyl, and p-coumaryl alcohol), lignin is formed through a radical pathway resulting in an assortment of linkages, of which the β-O-4 linkage is the most prevalent (up to 60% in some hardwood species). In planta, lignin plays an important role in water transport and in protecting plants from chemical and biological attack. Traditional attempts to depolymerize lignin have focused on the cleavage of β-O-4 linkages via thermal or reductive routes. However these pathways lead to low-value, unstable product mixtures. Moreover, typical product yields are low and the highly corrosive reaction medium results in added expense. More recently, catalytic oxidations have been studied as a viable means to lignin utilization. The present work will review the state-of-the-art of lignin oxidations, and focus on stoichiometric and catalytic attempts to oxidize lignin and lignin model compounds in order achieve selective stepwise depolymerization of lignin. Specifically, activated dimethyl sulfoxides and LDH catalysts were evaluated for lignin and/or lignin model compound oxidations leading, in some cases, to unexpected products.
|
465 |
Effect of lignin content and structural change during treatment on poplar for biofuel and biomaterial productionSun, Qining 27 May 2016 (has links)
Understanding the lignin effect and related structural parameters relevant to the recalcitrance of the plant cell wall and the individual and cooperative effects on enzymatic saccharification are vital for improving current processing and conversion methods for cellulosic biofuels. Data were collected from several pretreatment technologies (Hot-water, organo-solv, lime, lime-oxidant, dilute acid, and dilute acid-oxidant pretreatments) on cellulose ultrastructure, partial delignification followed by dilute acid pretreatment, dilute acid pretreatment of enzymatic isolated lignin, and melt rheology test of organo-solv lignin. Results showed minimal cellulose ultrastructural changes occurred due to lime and lime-oxidant pretreatments, which however especially at short residence time displayed relatively high enzymatic glucose yield. Dilute acid and dilute acid-oxidant pretreatments resulted in the largest increase in cellulose crystallinity, para-crystalline, and cellulose-Iβ allomorph content as well as the largest increase in cellulose microfibril or crystallite size. Organo-solv pretreatment generated the highest glucose yield, which was accompanied by the most significant increase in cellulose microfibril or crystallite size and decrease in relatively lignin contents. Lignin acted as a barrier which restricted cellulose crystallinity increase and cellulose crystallite growth during dilute acid pretreatment, and that partial delignification instead of complete lignin removal during DAP would benefit the increase of sugar yield. Furthermore, a deeper understanding of the structural change of lignin in the absence of cellulose-hemicellulose matrix during dilute acid pretreatment confirmed that delignification had the most beneficial effect in poplar, but for switchgrass was the xylan removal. In addition, investigation on the structural change of organo-solv lignin during melt rheology test indicated that high purity lignin isolated from plant biomass with the lowest S/G (syringyl/guaiacyl) ratios will exhibit superior processing performance characteristics to produce high-quality carbon fibers. These findings can aid both in the development of improved enzymes that contain activities to decompose recalcitrant structures and in the design of various processing conditions that efficiently convert specific biomass feedstock into sugars. They can also help in the design of new chemical modifications on lignin and innovative biosynthesis strategies for producing linear-fiber-forming lignin with high-performance.
|
466 |
Molecular biology, physiology and metal-resistance of the ligninolyticenzyme system in a newly isolated basidiomycete from a Hong KongforestSin, Kai-wai., 冼佳慧. January 2004 (has links)
published_or_final_version / Ecology and Biodiversity / Master / Master of Philosophy
|
467 |
INVESTIGATING THE ROLES OF PHENYLPROPANOID PATHWAY IN PLANT DEFENSE AGAINST PATHOGEN ATTACK2012 November 1900 (has links)
The plant phenylpropanoid pathway is initiated from deamination of phenylalanine to form cinnamic acid followed by hydroxylation and methylation of the aromatic ring to generate a variety of phenolic compounds including lignin monomers, flavonoid compounds and sinapate esters. The incorporation of phenylpropanoid metabolism served as a key step in the early land-colonization of plants from aqueous environment since phenolic compounds play important roles in plant development and abiotic/biotic stress responses. Lignin is a heteropolymer of hydroxycinnamyl alcohols that are derived from the major branch of plant phenylpropanoid pathway. The main function of lignin is to enhance the strength of plant cell wall and waterproof the vascular system for long-distance transportation of water and solutes. In addition, lignin is also involved in protecting plants against pathogen attack. My Ph.D. research is to investigate how lignin biosynthesis contributes to plant immunity. The results showed that the expression of major lignin biosynthetic genes was induced upon host fungal pathogen infection. Moreover, a mutant disrupted in the lignin gene F5H1 showed enhanced susceptibility when challenged with several fungal pathogens. F5H1 encodes a ferulic acid 5-hydroxylase that is uniquely present in angiosperm plants, leading to the biosynthesis of syringyl lignin monomer, which is not present in gymnosperm plants. Subsequent research demonstrated that f5h1 mutation impaired the penetration (pre-invasion) resistance but did not impact post-invasion resistance. Furthermore, the pathogen-induced expression of lignin genes was independent of well-characterized defensive signaling pathways, and regulated by a novel regulating mechanism. F5H1 contributes to pmr2-mediated resistance but acts independently of other molecular components of penetration resistance including PEN1, PEN2, and PEN3. In contrast to f5h1, a knockout mutant of flavonoid pathway gene chalcone isomerase (CHI/TT5) showed enhanced resistance to host anthracnose pathogen Colletotrichum higginsianum in a salicylic acid (SA)-dependent manner. Taken together, our results for the first time provide genetic evidence demonstrating that lignin biosynthetic gene F5H1 plays critical roles in plant penetration resistance and that an uncharted pathway in flavonoid metabolism confers an SA-dependent resistance pathway in Arabidopsis.
|
468 |
UTILIZATION OF BIO-RENEWABLE LIGNIN IN BUILDING HIGH CAPACITY, DURABLE, AND LOW-COST SILICON-BASED NEGATIVE ELECTRODES FOR LITHIUM-ION BATTERIESChen, Tao 01 January 2017 (has links)
Silicon-based electrodes are the most promising negative electrodes for the next generation high capacity lithium ion batteries (LIB) as silicon provides a theoretical capacity of 3579 mAh g-1, more than 10 times higher than that of the state-of-the-art graphite negative electrodes. However, silicon-based electrodes suffer from poor cycle life due to large volume expansion and contraction during lithiation/delithiation. In order to improve the electrochemical performance a number of strategies have been employed, such as dispersion of silicon in active/inactive matrixes, devising of novel nanostructures, and various coatings for protection. Amongst these strategies, silicon-carbon coating based composites are one of the most promising because carbon coating is comparatively flexible, easy to obtain, and scalable with various industrial processes.
Low cost and renewable lignin, which constitutes up to 30% dry mass of the organic carbon on earth, is widely available from paper and pulp mills which produce lignin in excess of 50 million tons annually worldwide. It is a natural bio-polymer with high carbon content and highly interconnected aromatic network existing as a structural adhesive found in plants. Generally burnt for energy on site, lignin is gradually finding its way into high value-added products such as precursor for carbon fibers, active material in negative electrodes, and raw material for supercapacitors.
This dissertation focuses on high performance silicon-based negative electrodes utilizing lignin as the carbon precursor for conductive additive, binder, and carbon coating. To my knowledge this is one of the first works attempting to utilize and summarize the performance of lignin in silicon-based negative electrodes. The first part of the dissertation shows that silicon-lignin composites treated at 800 ºC displayed good capacity and cycling performance. The second part goes to generalize the effect of temperature on silicon-lignin composites and shows that a low temperature treatment granted an electrode with superior performance and cycling properties owing to the preservation of polymeric properties of lignin. The final part of the dissertation discusses the current research trends in SiOx based negative electrodes and extends lignin to that field.
This dissertation will, hopefully, provide knowledge and insight for fellow researchers wishing to utilize lignin or other renewable resources in devising advanced battery electrodes.
|
469 |
APPLICATION OF HIGH-RESOLUTION ACCURATE MASS (HRAM) MASS SPECTROMETRY FOR ANALYSIS OF LIGNIN MODEL COMPOUNDS AND THE POST-PRETREATMENT PRODUCTSHuang, Fan 01 January 2017 (has links)
Lignin, one of main components in the woody cell walls, is a complex heterogeneous biopolymer, which provides structural support and transportation of water in plants. It is highly recalcitrant to degradation (both chemically and environmentally) and protects cellulose from being degraded/hydrolyzed. Due to the structural complexity of native lignin, complete characterization and elucidation of lignin’s structure remains very challenging. The overarching goal of this work is to develop mass spectrometry based analytical methods to contribute to a better understanding of lignin structures.
This dissertation will focus on the development and application of High-Resolution Accurate-Mass (HRAM) Mass Spectrometry (MS) as main analytical technique for studying lignin model compounds, including understanding the ionization behavior, studying corresponding fragmentation patterns and extracting structural information for structural elucidation eventually. Analytical methods were also developed to study the post-pretreatment products of the synthetic trimeric model compound using High-Performance Liquid Chromatography (HPLC) coupled with High-Resolution Accurate Mass (HRAM) Mass Spectrometry (MS).
The first project of this dissertation focuses on mass spectral the characterization of lignin models from the in vitro oxidative coupling reactions. Three specific trimeric compounds were isolated and their ionization behaviors were investigated using HRAMMS via electrospray ionization (ESI). The reaction parameters of the in vitro oxidative coupling reaction were critical in alternating the linkage profiles of resulting dehydrogenation polymers (DHPs). Reaction parameters were tuned to obtain desired DHP linkages profile. Upon the isolation of three different trimeric compounds, a systematic comparison of ionization efficiency of three trimeric compounds was carried out using ESI-HRAM-MS under different ionization conditions.
The second project was aimed to design a synthetic route for a lignin model compound that will be a good representation for native lignin during the pretreatment process. The model compound of interest has not been obtained previously through chemical synthesis. Due to the reactivity of cinnamyl alcohol, which contains the unsaturated side chain, this new synthesis strategy was developed based on the known aldol-type reaction route. A versatile synthesis procedure for preparation of β-O-4 oligomeric compounds was designed and implemented to include the most important functional groups (phenolic alcohol, aryl glycerol β-aryl ether bond and unsaturated side chain) in the resulting model compound. This new synthesis route also allowed incorporation of different monolignols.
In the third project, Fenton chemistry was applied to a synthetic lignin model compound. Due to the non-specificity in the post pretreatment product profile, nontargeted analytical strategy was developed and applied to study the post-pretreatment products of the model compound using HPLC-HRMS.
The results from this dissertation showed a significant difference in ionization behavior between three structurally different model compounds and indicated that primary structures of lignin compounds can largely affect corresponding electrospray ionization properties as well as fragmentation pattern. The work in this dissertation provides analytical techniques for non-targeted analysis of complex lignin samples and an insightful understanding of Fenton’s reaction pretreatment upon lignin model compound.
|
470 |
Synthetic, Sulfated, Lignin-Based AnticoagulantsMehta, Akul 01 January 2014 (has links)
Chemoenzymatically synthesized low molecular weight lignin polymers have been previously found to be potent inhibitors of a number of serine proteases via allosteric mechanisms targeting heparin binding sites. Herein, we describe the creation of synthetic sulfated β-O4 lignin (SbO4L) polymer, which is more homogenous compared to previous lignins with respect to its inter-monomeric linkage. SbO4L is a selective inhibitor of thrombin and plasmin. SbO4L was found to act via a unique mechanism targeting thrombin exosite 2 in a manner similar to platelet glycoprotein Ibα (GPIbα). Advanced hemostasis and thrombosis assays demonstrated that SbO4L acts via a dual mechanism: as an anticoagulant, by allosteric inhibition of thrombin catalysis; and as an antiplatelet agent, by competing with platelet GPIbα. These mechanisms are comparable in potency to low molecular weight heparins currently used in the market, indicating that targeting exosite 2 may yield clinically useful drugs in the future. Since the β-O4 type lignin was found to be selective for thrombin and plasmin, we hypothesized that other scaffolds from lignins could be potent inhibitors of other serine proteases. In particular, we screened a library of synthetic sulfated small molecules against factor XIa – an emerging target for prophylactic anticoagulation. Our search identified a sulfated benzofuran trimer (a mimic of β-5 type linkage found in lignins) as a potent inhibitor of factor XIa. Surprisingly, this inhibitor did not compete with heparin. A plausible binding site in the A3 domain of factor XIa was proposed by using molecular modeling techniques. The binding pose demonstrated good correlation with the structure activity data from in vitro studies. Further confirmation that the apple domains were required was proved by testing the trimer against recombinant catalytic domain. A 40-fold decrease in activity was observed. A temperature-dependant perrin plot demonstrated that factor XIa undergoes a large conformational change in the presence of the trimer, which is possibly converting the enzyme back into the zymogen-like shape. In general, the synthetic sulfated lignins can act as a useful foundation to develop anticoagulant, antiplatelet, and anti-inflammatory molecules in the future.
|
Page generated in 0.0743 seconds