• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Water treatment by quaternized lignocellulose

Keränen, A. (Anni) 21 March 2017 (has links)
Abstract Water-related problems are increasing globally, and new, low-cost technologies are needed to resolve them. Lignocellulosic waste materials contain reactive functional groups that can be used to provide a bio-based platform for the production of water treatment chemicals. Research on bio-based ion exchange materials in the treatment of real wastewaters is needed. In this thesis, anion exchange materials were prepared through chemical modification (epichlorohydrin, ethylenediamine and triethylamine) using five Finnish lignocellulosic materials as bio-based platforms. Scots pine sawdust and bark (Pinus sylvestris), Norway spruce bark (Picea abies), birch bark (Betula pendula/pubescens) and peat were chosen due to their local availability and abundance. The focus was placed on NO3- removal, but uptake of heavy metals, such as nickel, was also observed and studied. Studies on maximum sorption capacity, mechanism, kinetics, and the effects of temperature, pH and co-existing anions were used to elucidate the sorption behaviour of the prepared materials in batch and column tests. All five materials removed over 70% of NO3- at pH 3–10 (initial conc. 30 mg N/l). Quaternized pine sawdust worked best (max. capacity 32.8 mg NO3-N/g), and also in a wide temperature range (5–70°C). Column studies on quaternized pine sawdust using mining wastewater and industrial wastewater from a chemical plant provided information about the regeneration of exhausted material and its suitability for industrial applications. Uptake of Ni, V, Co and U was observed. Column studies proved the easy regeneration and reusability of the material. For comparison, pine sawdust was also modified using N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride and utilized to remove NO3- from groundwater and industrial wastewater. A maximum sorption capacity of 15.3 mg NO3-N/g was achieved for the synthetic solution. Overall, this thesis provides valuable information about bio-based anion exchange materials and their use in real waters and industrial applications. / Tiivistelmä Edullisia ja kestäviä vedenkäsittelytekniikoita tarvitaan kasvavien vesiongelmien ratkaisemiseen. Lignoselluloosaa, kuten sahanpurua, syntyy suuria määriä teollisuuden sivutuotteena. Sen reaktiivisia funktionaalisia ryhmiä voidaan modifioida kemiallisesti ja valmistaa siten biopohjaisia vedenkäsittelykemikaaleja. Tutkimustietoa oikeiden jätevesien puhdistuksesta biopohjaisilla ioninvaihtomateriaaleilla tarvitaan lisää, jotta materiaalien käyttöä voidaan kehittää ja edistää. Tässä väitöstyössä valmistettiin anioninvaihtomateriaaleja modifioimalla kemiallisesti viittä suomalaista lignoselluloosamateriaalia: männyn sahanpurua ja kuorta (Pinus sylvestris), kuusen kuorta (Picea abies), koivun kuorta (Betula pendula/pubescens) ja turvetta. Menetelmässä käytettiin epikloorihydriiniä, etyleenidiamiinia ja trietyyliamiinia orgaanisessa liuotinfaasissa. Työssä keskityttiin erityisesti nitraatin poistoon sekä synteettisistä että oikeista jätevesistä. Materiaalien soveltuvuutta teollisiin sovelluksiin arvioitiin maksimisorptiokapasiteetin, sorptioisotermien, kinetiikka- ja kolonnikokeiden sekä pH:n, lämpötilan ja muiden anionien vaikutusta tutkivien kokeiden avulla. Kaikki viisi kationisoitua tuotetta poistivat yli 70 % nitraatista laajalla pH-alueella (3–10). Kationisoitu männyn sahanpuru osoittautui parhaaksi materiaaliksi (32,8 mg NO3-N/g), ja se toimi laajalla lämpötila-alueella (5–70°C). Kolonnikokeet osoittivat sen olevan helposti regeneroitavissa ja uudelleenkäytettävissä. Tuotetta testattiin myös kaivos- ja kemiantehtaan jäteveden käsittelyyn, ja kokeissa havaittiin hyviä nikkeli-, uraani-, vanadiini- ja kobolttireduktioita. Männyn sahanpurua modifioitiin vertailun vuoksi myös kationisella monomeerilla, N-(3-kloro-2-hydroksipropyyli)trimetyyliammoniumkloridilla. Tuotteen maksimisorptiokapasiteetiksi saatiin 15,3 mg NO3-N/g ja se poisti nitraattia saastuneesta pohjavedestä. Kokonaisuudessaan väitöskirjatyö tarjoaa uutta tietoa biopohjaisten ioninvaihtomateriaalien valmistamisesta ja niiden soveltuvuudesta oikeiden teollisuusjätevesien käsittelyyn.
2

Mechanocatalytic pretreatment of lignocellulosic barley straw to reducing sugars

Schneider, L. (Laura) 29 September 2017 (has links)
Abstract Biomass conversion methods represent bioeconomic solutions for the sustainable production of value added commodities (chemicals and materials) as well as for energy purposes, either in solid (pellets), liquid (transport fuels) or gaseous (combustion gases e.g. biomethane) form. Lignocellulosic biomass as a renewable source available in immense quantity, is considered to be one of the most promising natural sources, with high potential in the replacement of conventional transportation fuels and reduction of greenhouse gas emissions. This thesis provides new insights into mechanocatalysis, which as yet is a novel technique in catalytic biomass conversion. The mechanocatalytic approach combines chemical catalysis and mechanical assisted processing driven by ball milling. Lignocellulosic barley straw was impregnated or merely mixed with the catalyst (formic acid, acetic acid, sulfuric acid, oxalic acid dihydrate and potassium pyrosulfate) and ball milled under various conditions yielding the selective depolymerization of lignocellulose into water-soluble xylo-oligosaccharides. Subsequent hydrolysis at moderate temperatures resulted in the formation of valuable reducing sugars, mainly xylose, galactose, arabinose and glucose, which constitute the basic materials for transportation fuel and chemical production. Reducing sugar release of 53.4 wt% with low by-product formation was observed within short milling durations using sulfuric acid as a catalyst in mechanocatalysis. Likewise, oxalic acid dihydrate and potassium pyrosulfate as a novel catalyst, successfully converted barley straw to reducing sugars (42.4 wt% and 39.7 wt%, respectively), however longer milling durations were required. In comparison, lower saccharification (<10 wt%) was obtained by employing formic acid and acetic acid in mechanocatalysis. Harsh milling conditions initiated a temperature increase within the reaction vessel resulting in enhanced sugar release. Likewise, greater sugar release was observed with increased catalyst amount and acidity. The results revealed that the balance of these factors is crucial for efficient catalytic conversion of barley straw. / Tiivistelmä Biomassan konvertointimenetelmät mahdollistavat biotalouden hengen mukaisesti uusia ratkaisuja kemikaalien ja materiaalien kestävään tuotantoon sekä biomassan energiakäyttöön eri muodoissa (kuten pelletit, biopolttoaineet ja biokaasu). Lignoselluloosapohjaista, uusiutuvaa biomassaa, kuten tässä työssä tutkittua ohran olkea, on runsaasti saatavilla. Lignoselluloosa onkin yksi lupaavimmista raaka-aineista korvaamaan fossiilisia polttoaineita ja vähentämään kasvihuonekaasupäästöjä. Väitöskirjatutkimus antaa uutta tietoa ohran oljen mekaanis–katalyyttisestä käsittelystä, mikä on suhteellisen uusi menetelmä biomassan katalyyttisessä muokkauksessa. Menetelmässä yhdistetään kemiallinen katalyysi ja mekaaninen muokkaus (jauhatus) kuulamyllyllä. Lignoselluloosa (ohran olki) impregnoitiin tai sekoitettiin tutkitun katalyytin (muurahaishappo, etikkahappo, rikkihappo, oksaalihappodihydraatti, kaliumpyrosulfaatti) kanssa ja käsiteltiin erilaisissa mekaanis–katalyyttisissä olosuhteissa. Lignoselluloosan selektiivinen depolymerointi muodosti vesiliukoisia oligosakkarideja ja edelleen hydrolyysin kautta pelkistyneitä sokereita (pääasiassa ksyloosia, galaktoosia, arabinoosia ja glukoosia), joita voidaan käyttää biopolttoaineiden ja -kemikaalien valmistuksessa. Tutkimuksen tulosten perusteella rikkihappokatalyytillä saatiin 53,4 massa-% ohran oljen sisältämistä pelkistyneistä sokereista vapautettua lyhyillä käsittelyajoilla. Lisäksi sivutuotteiden muodostuminen oli vähäistä. Vastaavasti oksaalihappodihydraatti (sokerisaanto 42,4 massa-%) ja kaliumpyrosulfaatti (sokerisaanto 39,7 massa-%) toimivat uusina katalyytteinä hyvin, mutta vaativat rikkihappokatalyyttiä pidemmät jauhatusajat. Sen sijaan muurahaishapolla ja etikkahapolla sokerisaanto oli erittäin alhainen (alle 10 massa-%) mekaanis–katalyyttisessä käsittelyssä. Tutkimuksessa todettiin, että voimakas jauhatus vaikutti selkeästi reaktiolämpötilan nousuun käsittelyn aikana, mikä edisti korkeampaa sokerisaantoa. Vastaavasti sokerisaantoa voitiin parantaa katalyyttimäärällä ja happamuudella. Tulokset osoittavat, että näiden muuttujien tasapaino on ratkaisevaa ohran oljen tehokkaan katalyyttisen muuntamisen kannalta.
3

Bifunctionalised pretreatment of lignocellulosic biomass into reducing sugars:use of ionic liquids and acid-catalysed mechanical approach

Dong, Y. (Yue) 27 October 2017 (has links)
Abstract Lignocellulosic biomass is the most abundant renewable raw material on the earth and it is so far the most suitable and promising resource for the production of biofuels to replace long-term use of fossil oil. This research aims to convert lignocellulose-based industrial residuals, fibre sludge (FS) from a pulp mill and pine sawdust (PSD) from a sawmill, into platform sugars by two different bifunctionalised pretreatments of lignocellulosic biomass. The bifunctionalised pretreatment combines the ordinary pretreatment (deconstruction) of lignocellulosic biomass with lignocellulosic polysaccharides saccharification. The outcome from both pretreatments can be further transformed into biofuels and chemicals. PSD and FS were converted into platform sugars by acid-catalysed mechanical depolymerisation in a planetary ball mill in the first part of this research. The efficiency of the conversion was mainly affected by the transferred energy caused by collisions, the total milling time, acid concentration and moisture content in the reaction. Approximately 30 wt% of the sugars was yielded from PSD and FS both in the short milling process with a low acid/substrate (A/S) concentration without any prior treatment. The second part of this research focuses upon the conversion of FS into platform sugars using hydroxyalkylimidazolium hydrogen sulphate ionic liquids (ILs). Around 29 wt% of the sugars was produced from FS using an IL/water mixture. The added water acted as a co-solvent and played a critical role in the utilisation of these ILs. The blended water reduced the viscosity of the ILs and enhanced the mass transfer between solvent and solute. In addition, the anions of the ILs provided their acidic property in an aqueous solution and offered an acidic environment for hydrolysis simultaneously. / Tiivistelmä Lignosellulossapohjainen biomassa on runsaimmin saatavilla oleva ja yksi lupaavimmista raaka-aineista biopolttoaineiden valmistukseen korvaamaan fossiilisia polttoaineita. Väitöskirjassa tutkitaan teollisuuden lignoselluloosapohjaisten sivutuotteiden, selluteollisuuden kuitulietteen ja sahateollisuuden sahanpurun (mäntypuru), muuntamista sokereiksi kahdella erilaisella ns. bifunktionaalisella esikäsittelyllä, joissa yhdistyvät lignoselluloosabiomassan perinteinen esikäsittely (hajotus) ja polysakkaridien sokeroituminen. Muodostuneet sokerit voidaan edelleen muuntaa biopolttoaineiksi ja -kemikaaleiksi. Tutkimuksen ensimmäisessä vaiheessa sahanpuru ja kuituliete muunnettiin sokereiksi happokatalysoidussa mekaanisessa käsittelyssä, joka tehtiin kuulamyllyssä. Reaktiossa katalyyttisen käsittelyn tehokkuuteen vaikuttivat erityisesti jauhatuksen kineettinen energia, jauhatusaika, happokonsentraatio ja reaktioseoksen kosteus. Tulosten perusteella todettiin, että ilman lähtöaineen esikäsittelyä sekä sahanpurun että kuitulietteen sokerisaanto oli noin 30 massa% lyhyen, matalassa happokonsentraatiossa tehdyn jauhatuksen jälkeen. Tutkimuksen toisessa vaiheessa kuituliete muutettiin sokereiksi käyttämällä ionista liuotinta (IL), hydroksialkyyli-imidatsoliumvetysulfaattia. Sokerisaanto kuitulietteestä oli noin 29 massa% IL-vesiseoksessa. Vesi toimi reaktiossa apuliuottimena ja sen rooli on keskeinen ionisten liuottimien käytössä. Sekoittunut vesi laski ionisen liuottimen viskositeettia sekä edisti aineensiirtoa liuottimen ja liukenevan aineen välillä. IL:n anionit lisäsivät happamuutta vesiliuoksessa ja mahdollistivat happamat olosuhteet samanaikaiselle hydrolyysille. / Abstract Biomasse aus Lignocellulose ist der am häufigsten vorkommende nachwachsende Rohstoff der Erde und wird aktuell als eine der besten Alternativen für die Produktion von Biokraftstoffen gesehen. Diese sollen langfristig die fossilen Öl-basierten Produkte ersetzen. Diese Forschungsarbeit untersucht die Herstellung von Zucker aus Lignocellulose basierten Abfällen. Faserschlamm aus der Zellstoffindustrie und Kiefern-Sägemehl aus der Holzverarbeitung wurden durch zwei unterschiedliche Bifunktionelle Vorbehandlungen aufgespalten. Diese Bifunktionelle Vorbehandlung kombiniert zwei Schritte in einem Prozess; die gewöhnliche Dekonstruktion der Biomasse und die Verzuckerung von Polysacchariden aus der Lignocellulose. Das so erzeugte Produkt dient als Ausgangsstoff für die weitere Herstellung von Biokraftstoffen und Chemikalien. Im ersten Teil dieser Forschungsarbeit wurden Kiefern-Sägemehl und Faserschlamm in einer Planeten-Kugelmühle zermahlen und gleichzeitig durch eine Säure depolymerisiert. Der Wirkungsgrad dieser säurekatalysierten mechanischen Depolymerisation wurde hauptsächlich durch die Übertragung der Reibungsenergie, der Mahldauer der Zerkleinerung, der Konzentration der Säure und der Feuchtegehalt der Proben beeinflusst. Etwa 30 wt% Zucker wurde so durch den kurzen Zermahlungsprozess aus Kiefern-Sägemehl und Faserschlamm gewonnen. Dabei wurden die Proben nicht vorbehandelt und enthielten eine geringe Säure/Probe Konzentration. Der zweite Teil der Forschungsarbeit untersucht die Umwandlung von Faserschlamm in Zucker mittels der Ionischen Flüssigkeit (ILs) Hydroxyalkyl Imidazolium Hydrogensulfat. Aus den Faserschlamm Proben konnte 29 wt% Zucker durch eine Mischung von ILs und Wasser gewonnen werden. Das zugesetzte Wasser spielte als Co-Lösemittel eine wichtige Rolle in der Nutzung der Ionischen Flüssigkeit, dessen Viskosität so reduziert wurde. Dies führte zu einem erhöhten Stoffübergang zwischen dem Lösemittel und dem Solvat. Zusätzlich sorgten die Anionen der Ionischen Flüssigkeit für ein saures Milieu in der wässrigen Lösung und ermöglichten so eine gleichzeitige Hydrolyse.

Page generated in 0.0482 seconds