• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reaction and mass transfer kinetics in multiphase bioreactors:experimental and modelling studies

Tervasmäki, P. (Petri) 25 September 2018 (has links)
Abstract In the sugar platform of biorefining, the complex polymeric structure of lignocellulose biomass is degraded into sugars, which are utilized by microbial cells in the further processing steps. The reaction steps in both biomass degradation and microbial fermentation processes involve multiphase reactions in which mass transfer and reaction kinetics often play a key role. The aim of this thesis is to characterize the effect of these conditions on enzymatic hydrolysis of cellulose and utilization of sugars by aerobic microbes. These types of liquid-solid (cellulose hydrolysis) and liquid-gas (microbial cultivation) systems are typically very demanding on the reactors that are used in the process. By the fed-batch process utilized in this work, sufficient mixing in enzymatic hydrolysis of cellulose is achieved even with high final substrate concentration. One of the main outcomes of this work is the kinetic model that concentrates on the kinetics of fed-batch process by discretizing the substrate into subpopulations. By using this approach, the model parameters were identified in an adequate manner, and the poorly identified parameters could be sorted out. Parameter identifiability has been an issue in previous models for enzymatic hydrolysis of cellulose. Based on the experiments and modelling studies, it can be concluded that the enzymes remain intact for time scales relevant for the hydrolysis process. Thus, the decrease in the hydrolysis rate found in many literature studies is probably mostly due to substrate-enzyme interactions rather than denaturation of the enzyme. In aerobic cell cultivations, the mixing and mass transfer conditions are often more critical for the process performance. In this work, we studied the performance and suitability of alternative reactor types to be used in aerobic cell cultivations and obtained some promising results. In addition, the thesis presents a modelling approach to study the effect of process conditions on metabolism and growth rate of Pichia pastoris yeast. The model combines a kinetic model for yeast growth and a model for the mixing and mass transfer conditions in stirred tank reactor. / Tiivistelmä Biojalostuksen sokerialustassa lignoselluloosapohjaisen biomassan monimutkaista polymeerirakennetta muokataan ja sieltä vapautetaan monomeerisia sokereita, joita voidaan edelleen hyödyntää jatkojalostuksessa. Monet jatkojalostusprosessit käyttävät mikrobeja, joiden aineenvaihdunnassa sokereita voidaan jalostaa arvokkaammiksi tuotteiksi ns. fermentointiprosesseissa. Tämän väitöstyön tarkoitus on tutkia reaktio- ja aineensiirtokinetiikan vaikutusta selluloosan entsymaattiseen hydrolyysiin ja aerobisiin mikrobifermentointeihin. Näistä ensimmäinen on neste-kiintoainesysteemi ja jälkimmäinen neste-kaasusysteemi, ja tällaiset prosessit asettavat tyypillisesti merkittäviä vaatimuksia niissä käytettäville reaktoreille. Tässä työssä hyödynnettiin kiinteän raaka-aineen vähittäistä syöttöä (ns. fed-batch prosessi) selluloosan hydrolyysissä, jolloin sekoitus voidaan pitää riittävänä suurillakin kiintoainemäärillä. Työn merkittävin tuotos on kineettinen malli, jossa hyödynnetään fed-batch prosessia ja koedataa osittamalla mallinnusyhtälöt raaka-aineen syöttöajan perusteella. Tällä tavalla mallin parametrit saatiin identifioitua kohtuullisella tarkkuudella sekä eriteltyä huonosti identifioituneet parametrit. Mallin parametrien identifiointi on ollut ongelmallista monissa vastaavan tyyppisissä malleissa aiemmin. Kokeiden ja mallinnustulosten perusteella voidaan sanoa, että hydrolyysissä käytettävät entsyymit pysyvät aktiivisina prosessin aikana, ja usein todettu hydrolyysin hidastuminen johtuu ennemmin kiinteän kuidun ja entsyymien vuorovaikutuksen muutoksista kuin entsyymin denaturoitumisesta. Aerobisiin mikrobikasvatuksiin liittyen tässä työssä tutkittiin vaihtoehtoisten reaktorityyppien hyödyntämistä, joista saatiin myös lupaavia tuloksia. Lisäksi työssä kehitettiin mallinnustyökaluja, joilla voidaan tutkia prosessiolosuhteiden vaikutusta Pichia pastoris –hiivan metaboliaan ja kasvunopeuteen. Mallissa yhdistetään hiivan kasvun kineettinen malli sekä reaktoriolosuhteiden mallinnus.
2

Catalytic pretreatment and hydrolysis of fibre sludge into reducing sugars

Holm, J. (Jana) 19 November 2013 (has links)
Abstract Decreasing oil reserves, the need to reduce CO2 emissions and increasing energy demand are issues that are forcing scientists to search for new opportunities in the field of energy. As a result, biofuels have been considered as one possible solution to solve part of these challenges. This research is one small part of that effort. For both human and economic reasons the use of edible raw materials for biofuel production is not sustainable. This study aims to convert forest industry waste, namely fibre sludge, into reducing sugars (glucose). This platform chemical can then be converted to value-added products, biofuels such as ethanol or butanol for example. Depolymerisation of fibre sludge (cellulose) to glucose monomers was performed firstly by pretreatment with ionic liquids [BMIM]Cl and [AMIM]Cl and secondly hydrolysed by acids (dilute maleic and sulphuric acids) and enzymes. To go further with the research the two pretreatment steps, dissolution and hydrolysis were combined into a one-step reaction by using a task-specific ionic liquid [SBMIM]Cl. With the ionic liquid [AMIM]Cl used for pretreatment in this study, we were able to recover 85% of sugars relative to the initial dry mass of the fibre sludge. Corresponding yield was about 30% without pretreatment. The task-specific ionic liquid [SBMIM]Cl was able to dissolve and hydrolyse fibre sludge in a one-step reaction. This ionic liquid was also able to dissolve wet fibre sludge with a moisture content of up to 50%. Enzymatic hydrolysis of [AMIM]Cl pretreated fibre sludge showed also very promising yields of reducing sugars. / Tiivistelmä Biotaloudessa keskeisiä globaaleja haasteita ovat kasvava energiantarve, vähenevät fossiiliset öljyvarannot sekä tarve vähentää energiantuotannon ja liikenteen hiilidioksidipäästöjä, mikä on lisännyt viime vuosina aktiivisuutta biopolttoainetutkimuksen saralla. Biopolttoaineet voidaankin nähdä eräänä mahdollisuutena lisätä uusiutuvien luonnonvarojen käyttöä sekä siten edistää vähähiilistä taloutta. Uusien kestävän kehityksen periaatteita noudattavien energiantuotantomenetelmien kehittämisessä on suosittava biomassoja, jotka eivät kilpaile ruoantuotannon kanssa samoista raaka-aineista. Tässä suhteessa erityisen keskeisessä asemassa ovat mm. teollisuuden sivutuotteet, joita myös tässä työssä on tutkittu. Väitöskirjatutkimuksessa biomassaraaka-aineena on käytetty selluteollisuuden sivutuotteita, erityisesti kuitulietettä. Kuitulietteessä on korkea selluloosa- ja hemiselluloosapitoisuus, minkä vuoksi se soveltuisi ns. platform-kemikaalien valmistuksen raaka-aineeksi ja edelleen arvokkaiden kemikaalien ja polttoaineiden valmistukseen. Tutkimuksessa tavoitteena on ollut kuitulietteen sisältämien polymeerien liuottaminen ja hydrolyysi pelkistyneiksi sokereiksi, erityisesti glukoosiksi, mahdollisimman korkealla saannolla. Kuitulietteen, kuten yleensäkin selluloosan, haasteena on sen niukkaliukoisuus perinteisiin liuottimiin. Tämän vuoksi kuitulietettä esikäsiteltiin ionisissa liuottimissa ([BMIM]Cl ja [AMIM]Cl), jotta depolymerisaatio glukoosimonomeereiksi olisi mahdollinen korkealla saannolla. Esikäsittelyn jälkeen hydrolyysi tehtiin joko laimealla hapolla tai entsymaattisesti. Esikäsittelyä tutkittiin myös ns. spesifisessä ionisessa liuottimessa ([SBMIM]Cl), jossa kuitulietteen liukeneminen ja hydrolyysi tapahtuivat yhdessä vaiheessa. Esikäsittely [AMIM]Cl:ssa mahdollisti sen, että alkuperäisen kuivan kuitulietteen sokereista saatiin talteen 85 % entsymaattisen hydrolyysin jälkeen. Ilman esikäsittelyä vastaava saanto oli noin 30 %. Ionineste, [SBMIM]Cl, onnistui liuottamaan ja hydrolysoimaan kuitulietteen yhdessä vaiheessa, tosin sokerisaannot jäivät alhaisiksi. Märkä kuituliete, jonka kosteuspitoisuus oli 50 %, liukeni myös tähän ioninesteeseen.
3

Mechanocatalytic pretreatment of lignocellulosic barley straw to reducing sugars

Schneider, L. (Laura) 29 September 2017 (has links)
Abstract Biomass conversion methods represent bioeconomic solutions for the sustainable production of value added commodities (chemicals and materials) as well as for energy purposes, either in solid (pellets), liquid (transport fuels) or gaseous (combustion gases e.g. biomethane) form. Lignocellulosic biomass as a renewable source available in immense quantity, is considered to be one of the most promising natural sources, with high potential in the replacement of conventional transportation fuels and reduction of greenhouse gas emissions. This thesis provides new insights into mechanocatalysis, which as yet is a novel technique in catalytic biomass conversion. The mechanocatalytic approach combines chemical catalysis and mechanical assisted processing driven by ball milling. Lignocellulosic barley straw was impregnated or merely mixed with the catalyst (formic acid, acetic acid, sulfuric acid, oxalic acid dihydrate and potassium pyrosulfate) and ball milled under various conditions yielding the selective depolymerization of lignocellulose into water-soluble xylo-oligosaccharides. Subsequent hydrolysis at moderate temperatures resulted in the formation of valuable reducing sugars, mainly xylose, galactose, arabinose and glucose, which constitute the basic materials for transportation fuel and chemical production. Reducing sugar release of 53.4 wt% with low by-product formation was observed within short milling durations using sulfuric acid as a catalyst in mechanocatalysis. Likewise, oxalic acid dihydrate and potassium pyrosulfate as a novel catalyst, successfully converted barley straw to reducing sugars (42.4 wt% and 39.7 wt%, respectively), however longer milling durations were required. In comparison, lower saccharification (<10 wt%) was obtained by employing formic acid and acetic acid in mechanocatalysis. Harsh milling conditions initiated a temperature increase within the reaction vessel resulting in enhanced sugar release. Likewise, greater sugar release was observed with increased catalyst amount and acidity. The results revealed that the balance of these factors is crucial for efficient catalytic conversion of barley straw. / Tiivistelmä Biomassan konvertointimenetelmät mahdollistavat biotalouden hengen mukaisesti uusia ratkaisuja kemikaalien ja materiaalien kestävään tuotantoon sekä biomassan energiakäyttöön eri muodoissa (kuten pelletit, biopolttoaineet ja biokaasu). Lignoselluloosapohjaista, uusiutuvaa biomassaa, kuten tässä työssä tutkittua ohran olkea, on runsaasti saatavilla. Lignoselluloosa onkin yksi lupaavimmista raaka-aineista korvaamaan fossiilisia polttoaineita ja vähentämään kasvihuonekaasupäästöjä. Väitöskirjatutkimus antaa uutta tietoa ohran oljen mekaanis–katalyyttisestä käsittelystä, mikä on suhteellisen uusi menetelmä biomassan katalyyttisessä muokkauksessa. Menetelmässä yhdistetään kemiallinen katalyysi ja mekaaninen muokkaus (jauhatus) kuulamyllyllä. Lignoselluloosa (ohran olki) impregnoitiin tai sekoitettiin tutkitun katalyytin (muurahaishappo, etikkahappo, rikkihappo, oksaalihappodihydraatti, kaliumpyrosulfaatti) kanssa ja käsiteltiin erilaisissa mekaanis–katalyyttisissä olosuhteissa. Lignoselluloosan selektiivinen depolymerointi muodosti vesiliukoisia oligosakkarideja ja edelleen hydrolyysin kautta pelkistyneitä sokereita (pääasiassa ksyloosia, galaktoosia, arabinoosia ja glukoosia), joita voidaan käyttää biopolttoaineiden ja -kemikaalien valmistuksessa. Tutkimuksen tulosten perusteella rikkihappokatalyytillä saatiin 53,4 massa-% ohran oljen sisältämistä pelkistyneistä sokereista vapautettua lyhyillä käsittelyajoilla. Lisäksi sivutuotteiden muodostuminen oli vähäistä. Vastaavasti oksaalihappodihydraatti (sokerisaanto 42,4 massa-%) ja kaliumpyrosulfaatti (sokerisaanto 39,7 massa-%) toimivat uusina katalyytteinä hyvin, mutta vaativat rikkihappokatalyyttiä pidemmät jauhatusajat. Sen sijaan muurahaishapolla ja etikkahapolla sokerisaanto oli erittäin alhainen (alle 10 massa-%) mekaanis–katalyyttisessä käsittelyssä. Tutkimuksessa todettiin, että voimakas jauhatus vaikutti selkeästi reaktiolämpötilan nousuun käsittelyn aikana, mikä edisti korkeampaa sokerisaantoa. Vastaavasti sokerisaantoa voitiin parantaa katalyyttimäärällä ja happamuudella. Tulokset osoittavat, että näiden muuttujien tasapaino on ratkaisevaa ohran oljen tehokkaan katalyyttisen muuntamisen kannalta.
4

Bifunctionalised pretreatment of lignocellulosic biomass into reducing sugars:use of ionic liquids and acid-catalysed mechanical approach

Dong, Y. (Yue) 27 October 2017 (has links)
Abstract Lignocellulosic biomass is the most abundant renewable raw material on the earth and it is so far the most suitable and promising resource for the production of biofuels to replace long-term use of fossil oil. This research aims to convert lignocellulose-based industrial residuals, fibre sludge (FS) from a pulp mill and pine sawdust (PSD) from a sawmill, into platform sugars by two different bifunctionalised pretreatments of lignocellulosic biomass. The bifunctionalised pretreatment combines the ordinary pretreatment (deconstruction) of lignocellulosic biomass with lignocellulosic polysaccharides saccharification. The outcome from both pretreatments can be further transformed into biofuels and chemicals. PSD and FS were converted into platform sugars by acid-catalysed mechanical depolymerisation in a planetary ball mill in the first part of this research. The efficiency of the conversion was mainly affected by the transferred energy caused by collisions, the total milling time, acid concentration and moisture content in the reaction. Approximately 30 wt% of the sugars was yielded from PSD and FS both in the short milling process with a low acid/substrate (A/S) concentration without any prior treatment. The second part of this research focuses upon the conversion of FS into platform sugars using hydroxyalkylimidazolium hydrogen sulphate ionic liquids (ILs). Around 29 wt% of the sugars was produced from FS using an IL/water mixture. The added water acted as a co-solvent and played a critical role in the utilisation of these ILs. The blended water reduced the viscosity of the ILs and enhanced the mass transfer between solvent and solute. In addition, the anions of the ILs provided their acidic property in an aqueous solution and offered an acidic environment for hydrolysis simultaneously. / Tiivistelmä Lignosellulossapohjainen biomassa on runsaimmin saatavilla oleva ja yksi lupaavimmista raaka-aineista biopolttoaineiden valmistukseen korvaamaan fossiilisia polttoaineita. Väitöskirjassa tutkitaan teollisuuden lignoselluloosapohjaisten sivutuotteiden, selluteollisuuden kuitulietteen ja sahateollisuuden sahanpurun (mäntypuru), muuntamista sokereiksi kahdella erilaisella ns. bifunktionaalisella esikäsittelyllä, joissa yhdistyvät lignoselluloosabiomassan perinteinen esikäsittely (hajotus) ja polysakkaridien sokeroituminen. Muodostuneet sokerit voidaan edelleen muuntaa biopolttoaineiksi ja -kemikaaleiksi. Tutkimuksen ensimmäisessä vaiheessa sahanpuru ja kuituliete muunnettiin sokereiksi happokatalysoidussa mekaanisessa käsittelyssä, joka tehtiin kuulamyllyssä. Reaktiossa katalyyttisen käsittelyn tehokkuuteen vaikuttivat erityisesti jauhatuksen kineettinen energia, jauhatusaika, happokonsentraatio ja reaktioseoksen kosteus. Tulosten perusteella todettiin, että ilman lähtöaineen esikäsittelyä sekä sahanpurun että kuitulietteen sokerisaanto oli noin 30 massa% lyhyen, matalassa happokonsentraatiossa tehdyn jauhatuksen jälkeen. Tutkimuksen toisessa vaiheessa kuituliete muutettiin sokereiksi käyttämällä ionista liuotinta (IL), hydroksialkyyli-imidatsoliumvetysulfaattia. Sokerisaanto kuitulietteestä oli noin 29 massa% IL-vesiseoksessa. Vesi toimi reaktiossa apuliuottimena ja sen rooli on keskeinen ionisten liuottimien käytössä. Sekoittunut vesi laski ionisen liuottimen viskositeettia sekä edisti aineensiirtoa liuottimen ja liukenevan aineen välillä. IL:n anionit lisäsivät happamuutta vesiliuoksessa ja mahdollistivat happamat olosuhteet samanaikaiselle hydrolyysille. / Abstract Biomasse aus Lignocellulose ist der am häufigsten vorkommende nachwachsende Rohstoff der Erde und wird aktuell als eine der besten Alternativen für die Produktion von Biokraftstoffen gesehen. Diese sollen langfristig die fossilen Öl-basierten Produkte ersetzen. Diese Forschungsarbeit untersucht die Herstellung von Zucker aus Lignocellulose basierten Abfällen. Faserschlamm aus der Zellstoffindustrie und Kiefern-Sägemehl aus der Holzverarbeitung wurden durch zwei unterschiedliche Bifunktionelle Vorbehandlungen aufgespalten. Diese Bifunktionelle Vorbehandlung kombiniert zwei Schritte in einem Prozess; die gewöhnliche Dekonstruktion der Biomasse und die Verzuckerung von Polysacchariden aus der Lignocellulose. Das so erzeugte Produkt dient als Ausgangsstoff für die weitere Herstellung von Biokraftstoffen und Chemikalien. Im ersten Teil dieser Forschungsarbeit wurden Kiefern-Sägemehl und Faserschlamm in einer Planeten-Kugelmühle zermahlen und gleichzeitig durch eine Säure depolymerisiert. Der Wirkungsgrad dieser säurekatalysierten mechanischen Depolymerisation wurde hauptsächlich durch die Übertragung der Reibungsenergie, der Mahldauer der Zerkleinerung, der Konzentration der Säure und der Feuchtegehalt der Proben beeinflusst. Etwa 30 wt% Zucker wurde so durch den kurzen Zermahlungsprozess aus Kiefern-Sägemehl und Faserschlamm gewonnen. Dabei wurden die Proben nicht vorbehandelt und enthielten eine geringe Säure/Probe Konzentration. Der zweite Teil der Forschungsarbeit untersucht die Umwandlung von Faserschlamm in Zucker mittels der Ionischen Flüssigkeit (ILs) Hydroxyalkyl Imidazolium Hydrogensulfat. Aus den Faserschlamm Proben konnte 29 wt% Zucker durch eine Mischung von ILs und Wasser gewonnen werden. Das zugesetzte Wasser spielte als Co-Lösemittel eine wichtige Rolle in der Nutzung der Ionischen Flüssigkeit, dessen Viskosität so reduziert wurde. Dies führte zu einem erhöhten Stoffübergang zwischen dem Lösemittel und dem Solvat. Zusätzlich sorgten die Anionen der Ionischen Flüssigkeit für ein saures Milieu in der wässrigen Lösung und ermöglichten so eine gleichzeitige Hydrolyse.

Page generated in 0.0577 seconds