1 |
On the fluid mechanics of electrochemical coating and spray paintingOlivas, Pedro January 2001 (has links)
Finite-volume methods have been used for modeling of fluidflows involved in forced convection electrochemical coating androtating spray painting systems. Electrodeposition on a singlecircular cylinder under forced convection for Reynolds numbers10 and 200 was simulated. Comparisons with earlier numericaland theoretical results are presented and it is shown that theunsteady wake that appears for Reynolds numbers greater than 50affects the mass transfer from the surface of the cylinder onlyin an average sense. This result is compared with a heattransfer case, where unsteadiness is much more manifest. Theeffect of application of circulation movement around thecylinder surface was considered, showing that the use ofoptimal values for circulation can create a recirculation zonearound the cylinder and result in a remarkable improvement ofthe deposit uniformity. The magnetoelectrolysis researchdiscipline is presented with focus on magnetic fields uses onmass transfer processes. A classification of the governingdimensionless parameters that control the phenomena isproposed. Application of magnetoelectrolysis on electroplatingprocesses is done for the first time. It is found that the useof an alternating magnetically induced force around thecylinder can result in interesting improvement of quality andproductivity. Application of numerical methods is also studiedin another field of the surface finishing industry, thepainting atomizers. A critical situation of "reverse flow" isanalyzed. Different parameters of this phenomenon are studiedand suggestions for atomizers design are given and tested. <b>Keywords:</b>mass transfer, electrochemical coating, iontransport, forced convection, diffusion, magnetoelectrolysis,electrolyte, limiting current, numerical simulation,finite-volume methods, paint atomization, Coanda effect.
|
2 |
On the fluid mechanics of electrochemical coating and spray paintingOlivas, Pedro January 2001 (has links)
<p>Finite-volume methods have been used for modeling of fluidflows involved in forced convection electrochemical coating androtating spray painting systems. Electrodeposition on a singlecircular cylinder under forced convection for Reynolds numbers10 and 200 was simulated. Comparisons with earlier numericaland theoretical results are presented and it is shown that theunsteady wake that appears for Reynolds numbers greater than 50affects the mass transfer from the surface of the cylinder onlyin an average sense. This result is compared with a heattransfer case, where unsteadiness is much more manifest. Theeffect of application of circulation movement around thecylinder surface was considered, showing that the use ofoptimal values for circulation can create a recirculation zonearound the cylinder and result in a remarkable improvement ofthe deposit uniformity. The magnetoelectrolysis researchdiscipline is presented with focus on magnetic fields uses onmass transfer processes. A classification of the governingdimensionless parameters that control the phenomena isproposed. Application of magnetoelectrolysis on electroplatingprocesses is done for the first time. It is found that the useof an alternating magnetically induced force around thecylinder can result in interesting improvement of quality andproductivity. Application of numerical methods is also studiedin another field of the surface finishing industry, thepainting atomizers. A critical situation of "reverse flow" isanalyzed. Different parameters of this phenomenon are studiedand suggestions for atomizers design are given and tested.</p><p><b>Keywords:</b>mass transfer, electrochemical coating, iontransport, forced convection, diffusion, magnetoelectrolysis,electrolyte, limiting current, numerical simulation,finite-volume methods, paint atomization, Coanda effect.</p>
|
3 |
Advances in application of the limiting current technique for solid-liquid mass transfer investigationsZalucky, Johannes, Rabha, Swapna, Schubert, Markus, Hampel, Uwe 24 April 2017 (has links) (PDF)
The limiting current technique has widely been used to study liquid-solid mass transfer in various reactor configurations. In the present contribution several underlying physical aspects have been investigated in order to improve the design of mass transfer experiments. Experimentally, the significant influence of electrolyte composition and hydrodynamic conditions have been studied and quantified to ensure conditions of high reproducibility. In the course of single phase COMSOL simulations, different electrode configurations have been examined with emphasis on concentration fields and electric current distribution showing a large sensitivity of the experimental configuration on the absolute current values.
|
4 |
Advances in application of the limiting current technique for solid-liquid mass transfer investigationsZalucky, Johannes, Rabha, Swapna, Schubert, Markus, Hampel, Uwe January 2014 (has links)
The limiting current technique has widely been used to study liquid-solid mass transfer in various reactor configurations. In the present contribution several underlying physical aspects have been investigated in order to improve the design of mass transfer experiments. Experimentally, the significant influence of electrolyte composition and hydrodynamic conditions have been studied and quantified to ensure conditions of high reproducibility. In the course of single phase COMSOL simulations, different electrode configurations have been examined with emphasis on concentration fields and electric current distribution showing a large sensitivity of the experimental configuration on the absolute current values.
|
5 |
Towards an Understanding of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel CellsMorgan, Jason 12 December 2016 (has links)
The gas diffusion layer (GDL) is one of the key components in a polymer electrolyte membrane (PEM) fuel cell. It performs several functions including the transport of reactant gases and product water to and from the catalyst layer, conduction of both electrons and heat produced in the catalyst layer, as well as mechanical support for the membrane. The overarching goal of this work is to thoroughly examine the GDL structure and properties for use in PEM fuel cells, and more specifically, to determine how to characterize the GDL experimentally ex-situ, to understand its performance in-situ, and to relate theory to performance through controlled experimentation. Thus, the impact of readily measured effective water vapor diffusivity on the performance of the GDL is investigated and shown to correlate to the wet limiting current density, as a surrogate of the oxygen diffusivity to which it is more directly related. The influence of microporous layer (MPL) design and construction on the fuel cell performance is studied and recommendations are made for optimal MPL designs for different operating conditions. A method for modifying the PTFE (Teflon) distribution within the GDL is proposed and the impact of distribution of PTFE in the GDL on fuel cell performance is studied. A method for characterizing the surface roughness of the GDL is developed and the impact of surface roughness on various ex-situ GDL properties is investigated. Finally, a detailed analysis of the physical structure and permeability of the GDL is provided and a theoretical model is proposed to predict both dry and wet gas flow within a GDL based on mercury intrusion porosimetry and porometry data. It is hoped that this work will contribute to an improved understanding of the functioning and structure of the GDL and hence advance PEM fuel cell technology.
|
6 |
Electrochemical and Photocatalytic Oxidation of HydrocarbonsRismanchian, Azadeh January 2014 (has links)
No description available.
|
7 |
Mass Transport Enhancement in Copper Electrodeposition due to Gas Co-EvolutionGonzalez-Pena, Omar Israel 03 September 2015 (has links)
No description available.
|
8 |
The Effect of Salt Concentration on Aqueous Strong Acid, Carbon Dioxide, andHydrogen Sulfide Corrosion of Carbon SteelMadani Sani, Fazlollah January 2021 (has links)
No description available.
|
9 |
STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTSMartí Calatayud, Manuel César 12 January 2015 (has links)
La presente Tesis Doctoral consiste en la determinación de las propiedades de transporte de diferentes especies catiónicas a través de membranas de intercambio catiónico. Las membranas de intercambio iónico son un componente clave de los reactores electroquímicos y de los sistemas de electrodiálisis, puesto que determinan el consumo energético y la eficiencia del proceso. La utilización de este tipo de membranas para el tratamiento de efluentes industriales no es muy extendida debido a los requisitos de elevada resistencia química y durabilidad que deben cumplir las membranas. Otro asunto importante radica en la eficiencia en el transporte de los iones que se quieren eliminar a través de la membrana. Normalmente, existe una competencia por el paso a través de las membranas entre diferentes especies debido al carácter multicomponente de los efluentes a tratar. Sin embargo, una mejora en las propiedades de las membranas de intercambio iónico permitiría la implantación del tratamiento mediante reactores electroquímicos de efluentes industriales con un contenido importante en compuestos metálicos, tales como los baños agotados de las industrias de cromado. La utilización de una tecnología limpia como la electrodiálisis conllevaría diferentes ventajas, entre las cuales destacan la recuperación de los efluentes para su reutilización en el proceso industrial, el ahorro en el consumo de agua y la disminución de la descarga de contaminantes al medio ambiente.
La determinación de las condiciones de operación óptimas así como la mejora de las propiedades de transporte de las membranas constituye el principal tema de la presente investigación. Para ello, se emplearán diferentes tipos de membrana. En primer lugar, se estudiará el comportamiento de las membranas poliméricas comerciales que poseen unas propiedades de resistencia química elevadas, las cuales se tomarán como referencia. De forma paralela, se producirán membranas conductoras de iones a partir de materiales cerámicos económicos, ya que la resistencia de los materiales cerámicos a sustancias oxidantes y muy ácidas es mayor que la de los materiales poliméricos. Este punto constituye la parte más innovadora de la investigación, puesto que la mayoría de las membranas de intercambio iónico comerciales están basadas en materiales poliméricos que no pueden resistir las condiciones específicas de los efluentes industriales. Una vez determinadas las condiciones de operación óptimas, se realizarán ensayos en plantas piloto con el fin de confirmar los resultados obtenidos mediante las técnicas de caracterización y determinar el grado de recuperación y coste energético asociado a los procesos electrodialíticos de tratamiento de efluentes industriales. / Martí Calatayud, MC. (2014). STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/46004 / Premios Extraordinarios de tesis doctorales
|
Page generated in 0.0989 seconds