• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Localization for Khovanov homologies:

Zhang, Melissa January 2019 (has links)
Thesis advisor: Julia Elisenda Grigsby / Thesis advisor: David Treumann / In 2010, Seidel and Smith used their localization framework for Floer homologies to prove a Smith-type rank inequality for the symplectic Khovanov homology of 2-periodic links in the 3-sphere. Hendricks later used similar geometric techniques to prove analogous rank inequalities for the knot Floer homology of 2-periodic links. We use combinatorial and space-level techniques to prove analogous Smith-type inequalities for various flavors of Khovanov homology for periodic links in the 3-sphere of any prime periodicity. First, we prove a graded rank inequality for the annular Khovanov homology of 2-periodic links by showing grading obstructions to longer differentials in a localization spectral sequence. We remark that the same method can be extended to p-periodic links. Second, in joint work with Matthew Stoffregen, we construct a Z/p-equivariant stable homotopy type for odd and even, annular and non-annular Khovanov homologies, using Lawson, Lipshitz, and Sarkar's Burnside functor construction of a Khovanov stable homotopy type. Then, we identify the fixed-point sets and apply a version of the classical Smith inequality to obtain spectral sequences and rank inequalities relating the Khovanov homology of a periodic link with the annular Khovanov homology of the quotient link. As a corollary, we recover a rank inequality for Khovanov homology conjectured by Seidel and Smith's work on localization and symplectic Khovanov homology. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
2

Symmetric Spaces and Knot Invariants from Gauge Theory

Daemi, Aliakbar January 2014 (has links)
In this thesis, we set up a framework to define knot invariants for each choice of a symmetric space. In order to address this task, we start by defining appropriate notions of singular bundles and singular connections for a given symmetric space. We can associate a moduli space to any singular bundle defined over a compact 4-manifold with possibly non-empty boundary. We study these moduli spaces and show that they enjoy nice properties. For example, in the case of the symmetric space SU(n)/SO(n) the moduli space can be perturbed to an orientable manifold. Although this manifold is not necessarily compact, we introduce a comapctification of it. We then use this moduli space for singular bundles defined over 4-manifolds of the form YxR to define knot invariants. In another direction we mimic the construction of Donaldson invariants to define polynomial invariants for closed 4-manifolds equipped with smooth action of Z/2Z. / Mathematics
3

Topologically massive Yang-Mills theory and link invariants

Yildirim, Tuna 01 December 2014 (has links)
In this thesis, topologically massive Yang-Mills theory is studied in the framework of geometric quantization. This theory has a mass gap that is proportional to the topological mass m. Thus, Yang-Mills contribution decays exponentially at very large distances compared to 1/m, leaving a pure Chern-Simons theory with level number k. The focus of this research is the near Chern-Simons limit of the theory, where the distance is large enough to give an almost topological theory, with a small contribution from the Yang-Mills term. It is shown that this almost topological theory consists of two copies of Chern-Simons with level number k/2, very similar to the Chern-Simons splitting of topologically massive AdS gravity model. As m approaches to infinity, the split parts add up to give the original Chern-Simons term with level k. Also, gauge invariance of the split CS theories is discussed for odd values of k. Furthermore, a relation between the observables of topologically massive Yang-Mills theory and Chern-Simons theory is obtained. It is shown that one of the two split Chern-Simons pieces is associated with Wilson loops while the other with 't Hooft loops. This allows one to use skein relations to calculate topologically massive Yang-Mills theory observables in the near Chern-Simons limit. Finally, motivated with the topologically massive AdS gravity model, Chern-Simons splitting concept is extended to pure Yang-Mills theory at large distances. It is shown that pure Yang-Mills theory acts like two Chern-Simons theories with level numbers k/2 and -k/2 at large scales. At very large scales, these two terms cancel to make the theory trivial, as required by the existence of a mass gap.
4

Comparing Invariants of 3-Manifolds Derived from Hopf Algebras

Sequin, Matthew James 27 June 2012 (has links)
No description available.

Page generated in 0.0584 seconds