Spelling suggestions: "subject:"linker""
21 |
INVESTIGATIONS TOWARDS THE PREPARATION OF PHOTORESPONSIVE POLYMERS BASED ON PHOTOCLEAVABLE TELLURIUM-CONTAINING CROSS-LINKSGendy, Chris 10 1900 (has links)
<p>The goal of this research project is to synthesize, characterize, and examine the properties of a material that undergoes a decrease in refractive index upon exposure to light. It is anticipated that such photoresponses could elicit previously unknown nonlinear phenomena including self-trapped black beams. An appropriate material for these investigations would be a polymer cross-linked by photocleavable groups causing a Δ<em>n</em> < 0. Organo-ditellurides, molecules that contain a Te-Te bond, would be appropriate for the crosslinks as their σ*<sub>Te-Te</sub> ← n<sub>Te</sub> transition usually absorbs light between 400 and 500 nm, and can lead to photodissociation of the chalcogen-chalcogen bond.</p> <p>Initial attempts to directly functionalize a polymer (polystyrene) resulted in intractable solids. A more promising approach relies on the preparation of cross-linking agents followed by co-polymerization. Despite literature claims, to date, there is no structurally authenticated photoresponsive molecule that simultaneously contains vinyl (CH=CH) and telluride (-Te-) functional groups. The work in this thesis has yielded what would be the first example, in addition to a crystal structure obtained by X-ray diffraction, the compound has been characterized by multinuclear NMR (<sup>1</sup>H, <sup>13</sup>C, <sup>125</sup>Te) and vibrational spectroscopy with the support of DFT calculations.</p> / Master of Science (MSc)
|
22 |
The role of inter-domain linkers in the stability of modular Glycoside Hydrolases / Inter-domän länkares roll i stabiliteten hos modulära GlykosidhydrolaserEstreen, Erik January 2024 (has links)
Glykosidhydrolaser (GHs) är enzymer som katalyserar hydrolys av glykosidbindningar i polysackarider och fungerar på endo- eller exo-sätt, beroende på om de riktar sig mot mitten eller änden av en glykan-kedja. De är viktiga i kolcykeln och i olika industrier som använder biomassa som substrat. GHs är fördelaktiga i många industriella processer på grund av deras höga specificitet, omsättningsgrad och biologiska nedbrytbarhet, men de kan vara instabila och är ofta dyra att producera. De varierar i specificitet och har ibland flera katalytiska domäner eller icke-katalytiska tillbehörsdomäner, vilket hjälper till att bryta ner polysackarider och/eller främjar enzymets livslängd. Många GHs kan ha kolhydratbindande moduler (CBMs) som ökar deras termostabilitet och/eller katalytiska aktivitet. CBMs är kopplade till andra domäner i multimodulära domäner av inter-domän länkar (IDLs), vilket är polypeptidkedjor som ger strukturell flexibilitet och låter CBMs nå önskade mål på ett substrat, men den fulla funktionen av IDLs i enzymstabilisering har inte dokumenterats. Kitinaser är en grupp av GHs som riktar sig mot det motsträviga polysackaridet kitin, vilket finns i både marina och markbundna miljöer. De finns i organismer såsom insekter med kitinhaltiga exoskelett och i svampar eller andra mikrober med kitininnehållande cellväggar, men de finns även i organismer som inte syntetiserar eller ens metaboliserar kitin, på grund av deras andra relevanta funktioner inom patogenicitet, immunförsvar, etc. Kitin och dess oligosackarid-derivat har flera funktioner i biomass-industrier och kan användas för medicinska ändamål. Många GHs innehåller icke-katalytiska CBMs, varav många är kitinbindande, och spelar därför en roll i att främja kitinbindning och hydrolys av deras enzympartners. Detta projekt fokuserar på ett modulärt GH18-kitinas kodat av genen Cpin_2580. Kitinasdomänen är flankerad av två CBMs. Tidigare forskning har visat att dessa inte är kitinbindande men föreslog att de påverkar enzymets termostabilitet. Däremot undersöktes inte IDL:ernas påverkan i den tidigare studien. För att bestämma rollen av IDLs designades primers för att klona nya genvarianter av Cpin_2580 för att producera nya proteiner med varierande längder av länkar för att bestämma vad för effekt längden har på enzymets termostabilitet. Dessa primers användes till PCR för att skapa gensekvenser med den befintliga Cpin_2580-18s-plasmiden som mall, följt av kloning, proteinproduktion, rening och analys med hjälp av fluoroforbindningsanalys. Nya proteinvarianter kunde genereras och produceras i liten skala, men produktionen upplevde problem, vilket ledde till att IDLs roll inte kunde fastställas fullt ut. / Glycoside hydrolases (GHs) are enzymes that catalyse the hydrolysis of glycosidic bonds in polysaccharides, functioning in endo- or exo-manners, depending on whether they target the middle or the end of a glycan chain. They are crucial in the carbon cycle and various industries that utilise biomass as substrate. GHs are advantageous in many industrial processes due to their high specificity, turnover rates, and biodegradability, but they can be unstable and are often costly to produce. They vary in specificity and sometimes carry multiple catalytic domains or non-catalytic accessory domains, aiding in polysaccharide breakdown and/or promoting the longevity of the enzyme. Many GHs can have carbohydrate binding modules (CBMs) attached that can be considered accessory domains, which increases their thermostability and/or catalytic activity in many cases. CBMs are attached to other domains in multi-modular enzymes by inter-domain linkers (IDLs), which are polypeptide chains that give structural flexibility and allow the CBMs to reach desired targets on a substrate, but the full function of IDLs in enzyme stabilisation has not been documented. Chitinases are a group of GHs that targets the recalcitrant polysaccharide chitin, which exists in both marine and terrestrial environments. They exist in organisms such as insects that have chitinous exoskeletons and in fungi or other microbes with chitin-containing cell walls, but they are also found in organisms that do not synthesise or even metabolise chitin, due to their other functions of relevance in pathogenicity, immune defence, etc. Chitin and its oligosaccharide derivatives have multiple functions in biomass industries, and can be used for medical purposes. Many chitinases contain non-catalytic CBMs, many of which are often chitin-binding, and therefore have a role in promoting chitin attachment and hydrolysis by their enzyme partners. This project focuses on a modular GH18 chitinase encoded by the gene Cpin_2580. The chitinase domain is flanked by two CBMs. Previous research has shown that these are not chitin-binding but suggested they do influence the thermostability of the enzyme. However, the impact of the IDLs was not explored in that previous study. To determine the role of the IDLs, primers were designed with the purpose of cloning new gene variants of the gene Cpin_2580 to produce novel proteins with varying lengths of linkers to determine the effect the length has on the thermostability of the enzyme. These primers were used for PCR to create novel gene sequences using the pre-existing Cpin_2580-18s plasmid as a template, followed by cloning, protein production, purification, and analysis using fluorophore binding assay. Novel protein variants could be generated and produced at small scale, but scaled-up protein production experienced problems, which led to the role of IDLs not being fully determined.
|
23 |
Antibody-drug conjugate generation using coiled-coil interactionsBaniahmad, Seyed Farzad 05 1900 (has links)
Les conjugués anticorps-médicament (ADC) représentent une avancée révolutionnaire dans la thérapeutique du cancer en délivrant de manière sélective des médicaments cytotoxiques aux cellules tumorales, minimisant ainsi la toxicité systémique. Les ADC se composent de trois composants principaux : un anticorps monoclonal (mAb) ciblant un antigène spécifique associé à la tumeur, un médicament cytotoxique et un lien qui conjugue le médicament à l’anticorps. Malgré leur potentiel thérapeutique, la fabrication des ADC est confrontée à d’importants défis, nécessitant l’optimisation de plusieurs paramètres, en particulier pour obtenir une technologie de conjugaison optimale et un ratio médicament-anticorps (DAR) optimal. Les méthodes de conjugaison traditionnelles basées sur la chimie donnent souvent lieu à des mélanges hétérogènes avec des DAR variables, ce qui peut affecter négativement l’efficacité thérapeutique et la sécurité du produit final. Pour résoudre ce problème, la conjugaison spécifique au site a émergé comme une méthode plus précise, garantissant que les médicaments cytotoxiques sont attachés à des sites spécifiques sur la molécule d’anticorps. Cette technique vise à produire des ADC homogènes avec des DAR constants, améliorant ainsi leur pharmacocinétique et leur pharmacodynamie. Cependant, les conjugaisons spécifiques au site ne sont pas exemptes de limitations. L’un des principaux défis réside dans la complexité de l’ingénierie des modifications nécessaires. L’introduction de sites de conjugaison spécifiques nécessite un génie génétique précis, ce qui peut être techniquement difficile et chronophage. De plus, les processus de fabrication des ADC spécifiques au site sont plus complexes et nécessitent des techniques sophistiquées et des mesures étendues de contrôle qualité. Ces facteurs peuvent donc affecter la production d’ADC basée sur la conjugaison spécifique au site.
Le travail présenté dans cette thèse de doctorat propose l’utilisation d’une paire de peptides hétérologues à haute affinité, à savoir les coiled-coils E/K, pour produire des ADC avec une homogénéité améliorée et un DAR contrôlable.
Pour commencer, nous avons conçu, produit et purifié une bibliothèque d’anticorps monoclonaux (trastuzumab) marqués avec divers peptides Ecoil et évalué leur manufacturabilité via une transfection transitoire dans des cellules d’ovaire de hamster chinois (CHO) et avons étudié les caractéristiques des anticorps marqués produits. Nos données montrent que l’ajout de peptides Ecoil aux extrémités C-terminales des chaînes d’anticorps (chaînes légères, chaînes lourdes ou les deux) n’entrave pas la production de constructions chimériques de trastuzumab. De plus, les tests analytiques et cellulaires ont confirmé que les constructions de trastuzumab marquées avec Ecoil ont maintenu leur bioactivité. La position, le nombre et la longueur des peptides Ecoil n’ont eu aucune influence sur l’affinité de liaison et la stabilité des anticorps marqués à leur antigène. Dans le cadre d’une étude supplémentaire et d’une étape supplémentaire pour démontrer la polyvalence des peptides E/K, nous avons également évalué la capture et la libération du trastuzumab marqué avec Ecoil produit à partir d’hydrogels de dextrane macroporeux fonctionnalisés avec le peptide Kcoil (le partenaire de liaison du peptide Ecoil). Ensemble, ces données ont révélé que les peptides Ecoil, quelle que soit leur longueur, leur nombre et leur position sur l’anticorps, n’avaient aucun effet significatif sur la manufacturabilité, la capacité de liaison ou le schéma de libération de l’hydrogel. Sur la base de cette fondation, nous avons exploré l’utilisation de deux peptides d’affinité complémentaires, E-coil (EVSALEK) et K-coil (KVSALKE), pour développer des ADC avec une homogénéité améliorée et un DAR contrôlable. En utilisant une méthode d’analyse par résonance plasmonique de surface (SPR) sur mesure et une chromatographie d’exclusion stérique, nous avons mesuré la dissociation cinétique et la stabilité des complexes formés par le trastuzumab marqué avec Ecoil et la protéine fluorescente rouge monomérique (mRFP) marquée avec Kcoil en tant que substitut de médicament. La stabilité in vitro a également été évaluée dans le sérum sanguin à l’aide d’un test ELISA en interne avant les études in vivo. Ensuite, pour évaluer les performances in vivo, nous avons mené des études de biodistribution et de localisation tumorale dans des modèles de souris xénogreffées HER2. Ces expériences ont démontré la stabilité de nos ADC dans la circulation sanguine et leur accumulation efficace sur le site de la tumeur.
En général, ce projet vise à démontrer la faisabilité et la polyvalence du système d’affinité E/K pour la conjugaison spécifique au site de molécules thérapeutiques sur le squelette d’anticorps sans modifications chimiques complexes/préjudiciables. La fabrication simplifiée des ADC en utilisant cette méthode de “conjugaison en une seule étape” présentée ici ouvre la voie au développement de nouvelles méthodes dans la production d’ADC avec potentiellement une pharmacocinétique, une bioactivité et une stabilité améliorée. / Antibody-drug conjugate (ADC) represents a transformative breakthrough in cancer therapeutics by selectively delivering cytotoxic drugs to tumor cells, thereby minimizing systemic toxicity. ADC consists of three main components: a monoclonal antibody (mAb) targeting a specific tumor-associated antigen, a cytotoxic drug, and a linker that conjugates the drug to the antibody. Despite their therapeutic potential, the manufacturing of ADCs faces significant challenges, requires the optimization of several parameters particularly in achieving optimal conjugation technology and drug-to-antibody ratio (DAR).
Traditional chemical-based conjugation methods often result in heterogeneous mixtures with variable DARs, which can adversely affect the therapeutic efficacy and safety of the final product. To address this issue, site-specific conjugation has emerged as a more precise method, ensuring that cytotoxic drugs are attached to specific sites on the antibody molecule. This technique aims to produce homogeneous ADCs with consistent DARs, thereby enhancing their pharmacokinetics and pharmacodynamics. However, site-specific conjugations are not exempt from limitations. One of the main challenges is the complexity involved in engineering the necessary modifications. Introducing specific conjugation sites requires precise genetic engineering, which can be technically challenging and time-consuming. Moreover, site-specific ADC manufacturing processes are more complex and require sophisticated techniques and extensive quality control measures. These factors can therefore affect ADC production based on site-specific conjugation.
The work presented in this doctoral thesis proposed use of a high-affinity peptide pair, namely the E/K coiled-coils, to produce ADCs with improved homogeneity and controllable DAR.
To begin with, we designed, produced, and purified a library of monoclonal antibodies (trastuzumab) tagged with various Ecoil peptides and evaluated their manufacturability via transient transfection in Chinese hamster ovary (CHO) cells and investigated the characteristics of the produced tagged antibodies. Our data show that the addition of Ecoil tags at the C-termini of antibody chains (light chains, heavy chains, or both) does not hinder the production of chimeric trastuzumab constructs. Further, analytical and cell-based assays confirmed that the Ecoil-tagged trastuzumab constructs maintained their bioactivity.
The position, number, and length of the Ecoil tags had no influence on the binding affinity and stability of tagged antibodies to HER2 antigen. As an additional study and an extra step towards demonstrating the versatility of the E/K affinity peptides, we also evaluated the capture and release of produced Ecoil-tagged trastuzumab from macroporous dextran hydrogels functionalized with Kcoil peptide (the Ecoil peptide binding partner). Together, these data revealed that the Ecoil tags, regardless of their length, number, and position on the antibody, had no significant effect on manufacturability, binding capacity, or release pattern from the hydrogel.
Building on this foundation, we explored the use of two complementary affinity peptides, E-coil (EVSALEK) and K-coil (KVSALKE), to develop ADCs with improved homogeneity and controllable DAR. Using a tailored surface plasmon resonance (SPR) assay and size exclusion chromatography(SEC), we measured the kinetics of dissociation and stability of the complexes formed by Ecoil-tagged trastuzumab and Kcoil-tagged monomeric red fluorescent protein (mRFP) as a drug surrogate. The in vitro stability was also assessed in blood serum using an in-house enzyme-linked immunosorbent assay (ELISA) prior to the in vivo studies. Next, to evaluate the in vivo performance, we conducted biodistribution and tumor localization studies in HER2 xenograft mouse models, specifically using SKOV-3 cells, which exhibit deregulated HER2 expression. These experiments demonstrated the stability of our ADCs in blood circulation and their effective accumulation at the tumor site.
Overall, this project aims to demonstrate the feasibility and versatility of the E/K coiled coil affinity system for site-specific conjugation of the payload to the antibody backbone without complex/detrimental chemical modifications. The simplified manufacturing of ADCs using this “single-step conjugation” method shown here paves the way for developing new methods in production of ADCs with potentially enhanced pharmacokinetics, bioactivity, and stability.
|
Page generated in 0.055 seconds