31 |
On d.c. Functions and Mappings17 May 2001 (has links)
No description available.
|
32 |
On Convolution Squares of Singular MeasuresChan, Vincent January 2010 (has links)
We prove that if $1 > \alpha > 1/2$, then there exists a probability measure $\mu$ such that the Hausdorff dimension of its support is $\alpha$ and $\mu*\mu$ is a Lipschitz function of class $\alpha-1/2$.
|
33 |
A study of Besov-Lipschitz and Triebel-Lizorkin spaces using non-smooth kernels : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Mathematics at the University of Canterbury /Candy, Timothy. January 2008 (has links)
Thesis (M. Sc.)--University of Canterbury, 2008. / Typescript (photocopy). Includes bibliographical references (p. [58]). Also available via the World Wide Web.
|
34 |
On Convolution Squares of Singular MeasuresChan, Vincent January 2010 (has links)
We prove that if $1 > \alpha > 1/2$, then there exists a probability measure $\mu$ such that the Hausdorff dimension of its support is $\alpha$ and $\mu*\mu$ is a Lipschitz function of class $\alpha-1/2$.
|
35 |
Intrinsic characterization of asymptotically hyperbolic metrics /Bahuaud, Eric. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 42).
|
36 |
Optimale Konvergenzraten für voll diskretisierte Navier-Stokes-Approximationen höherer Ordnung in Gebieten mit Lipschitz-Rand /Bause, Markus. January 1997 (has links)
Universiẗat-Gesamthochsch., Diss.--Paderborn, 1997.
|
37 |
Bi-Lipschitz invariant geometry / Geometria Bi-Lipschitz invarianteThiago Filipe da Silva 18 January 2018 (has links)
The study about bi-Lipschitz equisingularity has been a very important subject in Singularity Theory in last decades. Many different approach have cooperated for a better understanding about. One can see that the bi-Lipschitz geometry is able to detect large local changes in curvature more accurately than other kinds of equisingularity. The aim of this thesis is to investigate the bi-Lipschitz geometry in an algebraic viewpoint. We define some algebraic tools developing classical properties. From these tools, we obtain algebraic criterions for the bi-Lipschitz equisingularity of some families of analytic varieties. We present a categorical and homological viewpoints of these algebraic structure developed before. Finally, we approach algebraically the bi-Lipschitz equisingularity of a family of Essentially Isolated Determinantal Singularities. / O estudo da equisingularidade bi-Lipschitz tem sido amplamente investigado nas últimas décadas. Diversas abordagens têm contribuído para uma melhor compreensão a respeito. Observa-se que a geometria bi-Lipschitz é capaz de detectar grandes alterações locais de curvatura com maior precisão quando comparada a outros padrões de equisingularidade. O objetivo desta tese é investigar a geometria bi-Lipschitz do ponto de vista algébrico. Definimos algumas estruturas algébricas desenvolvendo algumas propriedades clássicas. A partir de tais estruturas obtemos critérios algébricos para a equisingularidade bi-Lipschitz de algumas classes de famílias de variedades analíticas. Apresentamos uma visão categórica e homológica dos elementos desenvol- vidos. Finalmente abordamos algebricamente a equisingularidade de famílias de Singularidades Determinantais Essencialmente Isoladas.
|
38 |
Estudio de Algunos Problemas Inversos y de Controlabilidad: Transmisión de Ondas y Transporte-DifusiónMercado Saucedo, Alberto Carlos January 2007 (has links)
No description available.
|
39 |
Extension of results about p-summing operators to Lipschitz p-summing maps and their respective relativesNdumba, Brian Chihinga January 2013 (has links)
In this dissertation, we study about the extension of results of psumming
operators to Lipschitz p-summing maps and their respective
relatives for 1 ≤ p < ∞ .
Lipschitz p-summing and Lipschitz p-integral maps are the nonlinear
version of (absolutely) p-summing and p-integral operators respectively.
The p-summing operators were first introduced in the paper
[13] by Pietsch in 1967 for 1 < p < ∞ and for p = 1 go back to
Grothendieck which he introduced in his paper [9] in 1956. They were
subsequently taken on with applications in 1968 by Lindenstrauss and
Pelczynski as contained in [12] and these early developments of the
subject are meticulously presented in [6] by Diestel et al.
While the absolutely summing operators (and their relatives, the
integral operators) constitute important ideals of operators used in the
study of the geometric structure theory of Banach spaces and their applications
to other areas such as Harmonic analysis, their confinement
to linear theory has been found to be too limiting. The paper [8] by
Farmer and Johnson is an attempt by the authors to extend known
useful results to the non-linear theory and their first interface in this
case has appealed to the uniform theory, and in particular to the theory
of Lipschitz functions between Banach spaces. We find analogues
for p-summing and p-integral operators for 1 ≤ p < ∞. This then
divides the dissertation into two parts.
In the first part, we consider results on Lipschitz p-summing maps.
An application of Bourgain’s result as found in [2] proves that a map
from a metric space X into ℓ2X
1 with |X| = n is Lipschitz 1-summing.
We also apply the non-linear form of Grothendieck’s Theorem to prove
that a map from the space of continuous real-valued functions on [0, 1]
into a Hilbert space is Lipschitz p-summing for some 1 ≤ p < ∞.
We also prove an analogue of the 2-Summing Extension Theorem in
the non-linear setting as found in [6] by showing that every Lipschiz
2-summing map admits a Lipschiz 2-summing extension. When X is
a separable Banach space which has a subspace isomorphic to ℓ1, we
show that there is a Lipschitz p-summing map from X into R2 for
2 ≤ p < ∞ whose range contains a closed set with empty interior.
Finally, we prove that if a finite metric space X of cardinality 2k is
of supremal metric type 1, then every Lipschitz map from X into a
Hilbert space is Lipschitz p-summing for some 1 ≤ p < ∞.
In the second part, we look at results on Lipschitz p-integral maps.
The main result is that the natural inclusion map from ℓ1 into ℓ2 is
Lipschitz 1-summing but not Lipschitz 1-integral. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Mathematics and Applied Mathematics / unrestricted
|
40 |
Some mathematical problems in the dynamics of stochastic second-grade fluidsRazafimandimby, Paul Andre 21 June 2011 (has links)
In the present work we initiate the investigation of a stochastic system of evolution partial differential equations modelling the turbulent flows of a bidimensional second grade fluid. Global existence and uniqueness of strong probabilistic solution (but weak in the sense of partial differential equations) are expounded. We also give two results on the long time behavior of the strong probabilistic solution of this stochastic model. Mainly we prove that the strong probabilistic solution of our stochastic model converges exponentially in mean square to the stationary solution of the time-independent second grade fluids equations if the deterministic part of the external force does not depend on time. In the time-dependent case the strong probabilistic solution decays exponentially in mean square. These results are obtained under Lipschitz conditions on the forces entering in the model considered. We also establish the global existence of weak probabilistic solution when the Lipschitz condition on the forces no longer holds. Finally, we show that under suitable conditions on the data we can construct a sequence of strong probabilistic solutions of the stochastic second grade fluid that converges to the strong probabilistic solution of the stochastic Navier-Stokes equations when the stress modulus á tends to zero. All these results are new for the stochastic second-grade fluid and generalize the corresponding results obtained for the deterministic second-grade fluids. / Thesis (PhD)--University of Pretoria, 2011. / Mathematics and Applied Mathematics / unrestricted
|
Page generated in 0.3471 seconds