• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 15
  • 14
  • 13
  • 12
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Πειραματική και θεωρητική μελέτη των χαρακτηριστικών αποσβέσεως ενός υγρού λιπαντικού φίλμ

Καραχάλιος, Γ. 22 September 2010 (has links)
- / -
12

Electrokinetic phenomena in aqueous suspended films and foams

Hussein Sheik, Abdulkadir January 2018 (has links)
Electrokinetic phenomena in liquid foams is at a junction between two areas. On one side is the investigation of liquid foam drainage, and on the other side is electrokinetics of surface driven flow on solid-liquid interfaces. However, the electrokinetic phenomena in liquid foam films significantly lack understanding. Therefore, the novelty of the thesis is to address the mentioned gap in three stages. The outcome has potential applications in a novel separation approaches of biological molecules such as proteins and DNA. In the first stage, the electrokinetic flow of a sufficiently thick (180 μm) free liquid film was investigated using cationic and anionic surfactants by confocal micron-resolution particle image velocimetry (μ-PIV). The reverse of the surface charge resulted in a shift in charge of the electrical double layer at the free liquid film interface, which caused the direction of the electroosmotic velocity to reverse. In each surfactant type used, the fluid velocity profiles were measured at different depths of the free liquid film (different z-planes). It was found how the fluid velocity varied with depth. Numerical simulations of the electroosmotic flow in the same system were also performed using Finite Element Method to understand the flow dynamics. A reasonably good agreement was found between the numerical simulations and the experimental results validating the model. In the second stage, instead of flow visualisation particles, rhodamine B (RB) and fluorescein isocyanate (FICT) dye were added to the free liquid film. Under the initial conditions of pH 7.2, RB is a neutral dye, and FICT has a -2 charge. Under an imposed electric field pH variations were detected and an interesting flow profile was observed. The CFD model developed earlier (stage one) was modified to include the local pH variation. The behaviour of the simulated pH had a good agreement with the behaviour of the FICT. Further confirmation of local pH variation was undertaken using extra new experiments which also showed a good agreed with the simulation. In the third stage, a liquid foam electrokinetic separation chamber was designed to extend the study to include practical applications. The first challenge was to achieve a stable foam under external electric field. A polymer-surfactant mixture can solve the stability problem. However, the mixture of polymers required an alkaline pH (>9) condition for the polymer mixture to be soluble in the aqueous system. Lectin and tetramethylrhodamine goat anti-rabbit (IgG) protein mixture with different molecular mass to charge ratio (50 kDa and 150 kDa) were injected near the anode. The system was monitored in three location: (a) in a vicinity of the injection region, (b) between the two electrodes and (c) in a vicinity of the cathode. In the region (a), a decay of the luminescence intensity of the fluorescein of the two proteins was noted with varying rate. In region (b), an increase followed by a decrease in fluorescein intensity of the proteins was observed again at a varying rate. In region (c), an increase of the dye concentration was observed and again at a different rate. The observed difference was caused by difference of the electrophoretic velocity of the two proteins. The setup proved that proteins could be separated based on their electrophoretic mobility inside a liquid foam. The findings from the thesis show the ability to manipulate fluid flow within a free liquid film, and inside a liquid foam system by an external DC electric field, is not only interesting academically but has potential application in a novel separation approach of biological molecules and beyond. The result show, with the correct surfactant formulation, it possible to make a stable foam under an electric field which can be set up for separation of proteins using foam electrokinetics.
13

Simulation aux grandes échelles diphasique dans les moteurs downsizes à allumage commande / Two-phase LES in downsized spark ignition engine

Iafrate, Nicolas 15 March 2016 (has links)
Le moteur à allumage commandé downsizé, couplé à une stratégie d’injection directe, est l’une des solutions privilégiées par les constructeurs automobiles afin de réduire les émissions polluantes et d’augmenter le rendement. Toutefois, l’augmentation de la pression d’injection visant à favoriser l’atomisation du spray et donc l’homogénéité du mélange peut engendrer une forte interaction entre le spray et les parois de la chambre de combustion. Cette interaction est à l’origine d’hétérogénéités locales susceptibles d’altérer la combustion. Du fait de son caractère instationnaire, l’interaction spray/paroi (formation et évaporation d’un film liquide) et plus généralement la préparation du mélange en moteur à injection directe essence sont des phénomènes difficiles à analyser expérimentalement. En effet, un moteur muni d’accès optiques ne peut pas fonctionner dans les conditions thermodynamiques réelles (pression, température...). Dans ce contexte, la modélisation et plus particulièrement la Simulation aux Grandes Echelles (“Large Eddy Simulation” LES) est un moyen d’analyse complémentaire et indispensable. L’objectif de cette thèse est de développer les modèles physiques nécessaires à la description de la phase liquide avec une approche Euler-Lagrange pour la simulation dans les moteurs à piston. Dans un premier temps, une modélisation des caractéristiques physiques du spray en sortie d’injecteur, nommée GDI, est proposée et validée par comparaison avec des mesures expérimentales. Les résultats montrent la capacité du modèle GDI à reproduire la dynamique générale d’un spray pour deux types d’injecteurs multi-trous. Dans un deuxième temps, deux modèles sont développés pour traiter respectivement l’interaction entre le spray et les parois et l’évaporation du film liquide. Les premières validations de ces modèles sont faites sur des expériences académiques dédiées, permettant des comparaisons précises avec les mesures. Finalement deux configurations moteur sont simulées. La première, sans combustion, permet d’évaluer l’impact d’une modélisation fine de l’interaction spray/paroi par rapport à une approche simplifiée. Les résultats montrent que la prise en compte de la formation et de l’évaporation du film liquide modifie significativement la formation du mélange, notamment le champ de richesse au Point Mort Haut. La seconde est utilisée pour analyser l’impact de la phase liquide sur le mélange et la combustion. Ces calculs sont comparés à des calculs réalisés sans injection liquide et à des mesures expérimentales. Les résultats mettent en évidence que les stratifications de richesse et de température, causées par l’évaporation du liquide, ont un effet de plissement sur la flamme et diminuent sa vitesse de propagation. / Downsized spark ignition engines coupled with a direct injection strategy, are more and more attractive for car manufacturers in order to reduce pollutant emissions and increase efficiency. However, the high pressure levels used to promote spray atomization and consequently mixing can generate a strong interaction between the spray and the combustion chamber walls. The combustion process may be affected by local heterogeneities caused by this interaction. Spray/walls interaction (formation and evaporation of the liquid film) and mixture preparation are unsteady phenomena, explaining why their experimental studies are limited. In fact, it is difficult to reproduce the thermodynamic conditions (pressure, temperature...) representative of an engine with optical accesses. In this context, numerical simulation, and in particular Large Eddy Simulation (LES) is a complementary mean of analysis. This work aims at developing the necessary models for the two-phase combustion simulation for engines, using an Euler-Lagrange approach. First, a modeling of the spray physics downstream to the injector exit is proposed and validated by comparison with experimental data. Second, two models are proposed and implemented to adress respectively the spray/wall interaction and the liquid film evaporation. These models are first validated on dedicated academics experiments, allowing an accurate comparison with experimental data. Then, two engine configurations are simulated. The first one, without combustion, allows the evaluation of an accurate spray/wall interaction modeling in comparison with a simplified approach. Results show that accounting for the formation and evaporation of the liquid film has a significant impact on the fuel/air mixing, especially on the equivalence ratio distribution at the Top Dead Center. The second one is used to analyze the impact of liquid on the mixing and the combustion. The simulations are compared to experiments data and to simulations assuming a perfect gaseous mixing (without liquid injection). Results show that the temperature and equivalence ratio heterogeneities, created by the liquid evaporation, have a wrinkling effect on the flame and reduce its propagation speed.
14

Estudo experimental da transferência de calor e massa em evaporadores por filme descendente de água em tubos horizontais. / Experimental study of the heat and mass transfer in water falling film evaporation on horizontal tubes.

Beethoven Narvaez Romo 08 December 2014 (has links)
A tecnologia de evaporação por filme descendente pode ser empregada em diferentes aplicações como processos químicos, petroquímicos, dessalinização de água, ciclos de refrigeração por absorção, OTEC Ocean termal energy conversion primer, só para mencionar alguns. No entanto, esta tecnologia tem demandado númerosos estudos devido a que ainda não é totalmente bem entendida, inclusive certos fenômenos básicos como são os problemas de distribuição do líquido, comportamento da espessura do filme e, sua transferência simultânea de calor e massa, sendo sujeito a vários estudos tanto numéricos quanto experimentais. Este trabalho foi focado no estudo da transferência simultânea de calor e massa, espessura do filme a os problemas de distribuição na vaporização de filme de água sobre tubos. Para isto, foi construída uma bancada de teste experimental, disponível para mensurar as seguintes variáveis; (a) temperatura da superfície dos tubos evaporadores, (b) espessura do filme descendente, (c) vazões mássicas, (d) potência elétrica fornecida aos tubos evaporadores, e (e) registro fotográfico infravermelho. O presente trabalho foi estruturado em dois aspectos principais; (1) avaliação do coeficiente de transferência de calor e massa, e (2) medição da espessura do filme descendente. Para os dois casos foram analisados os mecanismos de transferência de calor: sensível e latente. Para o primeiro ponto foram calculados os coeficientes local e médio de transferência de calor. No último ponto, usou-se um mecanismo formado por um micrômetro de elevada precisão aliado a um sistema elétrico para mensurar a espessura do filme líquido, sendo comparada com a teoria de Nusselt. Encontrou-se que há uma forte dependência da transferência de calor e massa com a espessura do filme descendente para a região laminar de Reynolds ente 160 a 950, implicando uma diminuição da taxa de transferência de calor com o aumento do Reynolds, já que a espessura de filme impôs uma maior resistência térmica. Além disso, avaliou-se o sistema de medição da espessura do filme com 25% de divergência da teórica de Nusselt. / Falling film evaporation technology can be used in different applications such as water desalination, refrigeration and ar-conditioning absorption cycles, OTEC (ocean thermal energy conversion primer), petrochemical and chemical process industries. This technology still demands númerous studies due to the lack of a complete understanding, even some basic phenomena such as the liquid distribution problem, liquid film thickness behavior and the heat and mass transfer coefficients are subject of intense experimental and numerical studies. This work has analyzed experimentally the heat and mass transfer coefficient, falling film thickness and the distribution system in water vaporization over tubes. For that, it was built an experimental setup, which has been measured the following; (a) tube wall temperature, (b) falling film thickness, (c) mass flow rate, (d) electrical power supplied to the evaporator tube, (e) infrared images. The present work has been structured in two mean aspects; (1) heat and mass transfer coefficient evaluation, and 2) falling film thickness measurement. In both topics, the two heat transfer mechanisms were analyzed: sensible and latent heat transfer. For the first topic, it has been analyzed the local and the overall heat transfer. For the second part, the method used a novel mechanical configuration (leverage effect), which improves the micrometer reading with more precision to obtain the film thickness, which was compared with the Nusselt theory. The experimental data showed that there is a strong dependence between the heat and mass transfer coefficient with the film thickness in the laminar region (Reynolds between 160 e 950), implying a decreasing of the heat transfer rate when the Reynolds increased, due to that the film thickness imposes a greater thermal resistance. Moreover, the study found the film thickness with a divergence of 25 % when it was compared with the theoretical Nusselt film thickness.
15

Experimental Study of Annular Two-phase Flow on 3x3 Rod-bundle Geometry with Spacers / スペーサー付3×3模擬燃料ロッドバンドル内における環状二相流の実験的研究

Pham Hong Son 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18589号 / 工博第3950号 / 新制||工||1607(附属図書館) / 31489 / 京都大学大学院工学研究科原子核工学専攻 / (主査)教授 功刀 資彰, 教授 中部 主敬, 講師 河原 全作 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
16

Liquid Film Formation and Heat Transfer Characteristics of a Liquid Jet Obliquely Impinging onto a Wall / 壁面に斜め衝突する液体噴流の液膜形成および伝熱特性

Sako, Noritaka 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24715号 / エネ博第458号 / 新制||エネ||86(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー変換科学専攻 / (主査)教授 川那辺 洋, 教授 林 潤, 教授 藤本 仁 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
17

Experiments and simulations on the mechanics of ice and snow

Bahaloohoreh, Hassan January 2023 (has links)
In this study, experiments and simulations were conducted to investigate ice and snow. The ice sintering force as a function of temperature, pressing force (contact load), contact duration, and particle size during the primary stage of sintering was formulated using experimental methods along with an approximate, semi-analytic, close-form solution. It was shown that the ice sintering force increases nearly linear with increasing external pressing force but best approximated as a power law for dependency on both contact duration and particle size. Moreover, the exponent of the power law for size dependence is around the value predicted by general sintering theory. The temperature dependence of the sintering force is highly nonlinear and follows the Arrhenius equation. It was observed that at temperatures closer to the melting point, a liquid bridge is observed upon these paration of the contacted ice particles. The ratio of ultimate tensile strength of ice to the axial stress concentration factor in tension is found as an important factor in determining the sintering force, and a value of nearly 1.1 MPa was estimated to best catch the sintering force of ice in different conditions. From the temperature dependency, the activation energy is calculated to be around 41.4 kJ/mol, which is close to the previously reported value. Also, the results for the sintering force suggest that smaller particles are “stickier” than larger particles. Moreover, cavitation and surface cracking is observed during the formation of the ice particles and these can be one of the sources for the variations observed in the measured ice sintering force values. The presence of a capillary bridge in contact between an ice particle and a "smooth" (or rough) Aluminum surface at relative humidity around 50% and temperatures below the melting point was experimentally demonstrated. Experiments were conducted under controlled temperature conditions and the mechanical instability of the bridge upon separation of the ice particle from the Aluminum surface with a constant speed was considered. It was observed that a liquid bridge with a more pronounced volume at temperatures near the melting point is formed. It was showen that the separation distance is proportional to the cube root of the volume of the bridge. The volume of the liquidbridge is used to estimate the thickness of the liquid layer on the ice particle and the estimated value was shown to be within the range reported in the literature. The thickness of the liquid layer decreases from nearly 56 nm at -1.7◦C to 0.2 nm at -12.7◦C. The dependence can be approximated with a power law, proportional to (TM − T)−β, where β < 2.6. We further observe that for a rough surface, the capillary bridge formation in the considered experimental conditions vanishes. The Discrete Element Method (DEM) was employed to simulate the filling behavior of dry snow. Snow as a heterogeneous, hot material which is constituted from spherical ice particles which can form bonds. The bonding behavior of ice particles is important in determining the macroscopic behavior of snow. The bond diameter of ice-ice contacts as a function of time, compressive load, and strain rate is used and a DEM for dry snow was developed and programmed in MATLAB. A beam element with implemented damage model was used in the simulation. The simulated parameters were macroscopic angle of repose, packing density, and surface conditions as a function of temperature and fillingrate. The DEM results were able to verify the existing published experimental data. The simulation results showed that angle of repose of snow decreased with decreasing the temperature, the surface became irregular due to particles rotation and re-arrangement for lower falling speeds of particles, and density increased with depth of deposition.
18

Boiling Heat Transfer to Turbulent Liquid Films

Dernedde, Edgar 05 1900 (has links)
<p> Benzene and water films were passed over an inclined, hot copper plate. The boiling heat transfer to the turbulent liquid films has been measured with local heat-flux meters. These meters have been adopted from a design suggested by Gardon (G10), and could be used to measure boiling heat fluxes with an accuracy of about -20,000 BTU/hr.sq.ft. The results indicate that the heat transfer to the liquid films compares well with that of forced convection subcooled boiling. </p> <p> During boiling the liquid film is destroyed by the growing vapour bubbles and by the separation of the liquid from the hot plate. The break-up of the liquid films has been investigated with high-speed photography but an analysis of the hydrodynamics of this break-up has not been made. </p> / Thesis / Master of Engineering (ME)
19

Studies of Thin Liquid Films Confined between Hydrophobic Surfaces

Li, Zuoli 12 December 2012 (has links)
Surface force measurements previously conducted with thiolated gold surfaces showed a decrease in excess film entropy (£GSf), suggesting that hydrophobic force originates from changes in the structure of the medium (water) confined between hydrophobic surfaces. As a follow-up to the previous study, surface force measurements have been conducted using an atomic force microscope (AFM) with hydrophobic silica surfaces at temperatures in the range of 10 to 40¢XC. The silica sphere and silica plate were treated by both chemisorption of octadecyltrichlorosilane (OTS) and physical adsorption of octadecyltrimethylammonium chloride (C18TACl). A thermodynamic analysis of the results show similar results for both of the samples, that both ""Sf and excess film enthalpy ("Hf) become more negative with decreasing thickness of the water layer between the hydrophobic surfaces and decreasing temperature. |"Hf | > |T"Sf| represents a necessary condition for the excess free energy change ("Gf ) to be negative and the hydrophobic interaction to be attractive. Thus, the results obtained with both the silylated and C18TACl-adosrbed silica surfaces in the present work and the thiolated gold suefaces reported before show hydrophobic forces originate from structural changes in the medium. Thermodynamic analysis of SFA force measurements obtained at various temperatures revealed that "Sf were much more negative in the shorter hydrophobic force ranges than in the longer ranges, indicating a more significant degree of structuring in the water film when the two hydrophobic surfaces are closer together. It is believed that the water molecules in the thin liquid films (TLFs) of water form clusters as a means to reduce their free energy when they cannot form H-bonds to neighboring hydrophobic surfaces. Dissolved gas molecules should enhance the stability of structured cluster due to the van der Waals force between the entrapped gas molecules and the surrounding water molecules1, which may enhance the strength of the hydrophobic force. Weaker long-range attractive forces detected in degassed water than in air-equilibrated water was found in the present work by means of AFM force measurements, supporting the effect of dissolved gas on the structuring of water. At last, temperature effects on hydrophobic interactions measured in ethanol and the thermodynamic analysis revealed similar results as those found in water, indicating that the hydrophobic force originates from H-bond propagated structuring in the mediums. / Ph. D.
20

Rôle des films liquides sur des problèmes de mouillage dynamiques pour des systèmes liquide-liquide

Du, Lingguo 31 August 2012 (has links)
La récupération assistée du pétrole implique la progression dans unmilieu poreux d'une phase aqueuse qui pousse une phase organique. Al'échelle du pore, les forces visqueuses et la gravité sontnégligeables, et la capillarité joue un rôle prépondérant : ledéplacement des fluides est gouverné par leur affinité avec lessurfaces et par les hétérogénéités de canaux. Les films liquidesexistent dans les pores d'une roche. Trois systèmes microfluidiquessont mis en place pour étudier le rôle des films microscopiques (demouillage) ou des films macroscopiques (de coins). Le premier consisteen un capillaire de section circulaire dans lequel on suit lemouvement d'un ménisque dans des conditions de mouillage variées. Enparticulier, en mouillage pseudo-partiel, un hystérésis d'angle decontact est observé, mais les films de mouillage présents dans cesystème conduisent à un accrochage de ligne de contact beaucoup plusfaible qu'en absence de film. Les deuxième et troisième systèmesmettent en évidence l’influence des films de coins dans un canalrectangulaire sur l'avancée du ménisque. Le couplage de l'écoulemententre la phase du coin et la phase du milieu entraîne le drainage del’huile piégée. Les propriétés de ce nouveau mécanisme sontcaractérisées par des expériences et s’accordent avec le modèleconstruit. / Enhanced oil recovery involves the displacement of an organic fluid byan aqueous one in the pores of the rocks. At the pores scale. Thedisplacement of fluids is governed by wetting condition of the system.The viscous and gravity forces are negligible and the capillarityplays a dominant role heterogeneities of channel sizes. Threemicrofluidic systems are designed to study experimentally the role ofmicroscopic liquid films (wetting) or macroscopic ones (corners) inthe pores level. The first one consists of the displacement of ameniscus in a circular capillary with various wetting conditions. Inparticular, for pseudo-partial wetting systems, a contact anglehysteresis is observed but with a weak pinning as compared to partialwetting systems where there are non wetting films. The second andthird ones show the influences of liquid films in the corners of asquare channel. The coupling between the corner flows and the mainflow involves the drainage of the trapped oil cluster. The propertiesof this new mechanism are consistent with the theoretical model, andalso characterized by experiments.

Page generated in 0.0788 seconds