• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 35
  • 13
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 278
  • 278
  • 278
  • 71
  • 65
  • 55
  • 50
  • 40
  • 36
  • 30
  • 30
  • 29
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Sledování vlivu teploty na vlastnosti lithium-iontové baterie / Electrochemical Properties of Lithium-Ion battery under Elevated Temperature

Kulíková, Barbora January 2019 (has links)
This Master’s thesis deals with a monitoring of the temperature influence on Li-ion batteries, literature search of this topic and proposal of experiments. First chapter contains the theory of evolution and fundamentals of the Li-ion batteries. Planned experiments with flow charts and block diagrams are described in the second chapter. The work station is explained along with a description of the execution of the experiments in the third chapter. The experiments are analyzed and results explained in the last chapter.
152

Vliv teploty na parametry lithium - iontových článků / Influence of temperature on parameters of lithium-ion cells

Kuthan, Jiří January 2019 (has links)
Masters Thesis summarizes the theoretical findings about lithium-ion akumulators. It gives a overview of the basic types of galvanic cells, then deals in detail with the lithium-on cell. It's composition, electrochemical principle of working, thermal dependence, construction and area of application. The thesis describes the basic methods of measuring lithium-on cells, such as cyclic charging and discharging, cyclic voltammetry. The practical part compares selected types of materials for negative elektrodes in different temperatures.
153

Elektrody pro lithno-iontové baterie na bázi kobaltitanu lithného / Electrodes for lithium-ions batteries based on LiCoO2

Nejedlý, Libor January 2011 (has links)
This master´s thesis deals with electrodes for lithium-ions batteries based on LiCoO2. The first part of the project is devoted to the characteristics of Li-ion batteries, electrochemical reactions and characteristics of electrode materials. The next part describes an experiment that deals with the effects of NA doping on performance of layered materials for lithium secondary batteries. The materials were measured by cyclic voltammetry, impedance spectroscopy and galvanostatic cycling.
154

Kladné elektrody pro lithno-iontové akumulátory na bázi LiCoO2 / Positive electrode for lůithium-ion batteries based on LiCoO2

Krištof, Petr January 2013 (has links)
This diploma thesis deals with materials used by production ofcathodes of Lithium-ion batteries. Primary this thesis deals with LiCoO2material and its subsidizing of alkali metals. The first part deals with the charakteristic of Lithium-ion batteries, used materials, possibilities of doping and charging. The practical part concentrates on production of active substance of cathode and doping this substance by sodium and potassium. The methods of evaluation were used galvanostaticcycling and x-ray analysis (XRD).
155

IN SITU MORPHOLOGICAL AND STRUCTURAL STUDY OF HIGH CAPACITY ANODE MATERIALS FOR LITHIUM-ION BATTERIES

Xinwei Zhou (9100139) 16 December 2020 (has links)
Lithium-ion batteries(LIBs) have dominated the energy storage market in the past two decades. The high specific energy, low self-discharge, relatively high power and low maintenance of LIBs enabled the revolution of electronic devices and electric vehicle industry, changed the communication and transportation styles of the modern world. Although the specific energy of LIBs has increased significantly since first commercialized in 1991, it has reached a bottleneck with current electrode materials. To meet the increasing market demand, it is necessary to develop high capacity electrode materials.<div><br></div><div>Current commercial anode material for LIB is graphite which has a specific capacity of 372 mAh g-1. Other group IV elements (silicon (Si), germanium (Ge), tin (Sn)) have much higher capacities. However, group IV elements have large volume change during lithiation/delithiation, leading to pulverization of active materials and disconnection between electrode particles and current collector, resulting in fast capacity fading. To address this issue, it is essential to understand the microstructural evolution of Si, Ge and Sn during cycling.<br></div><div><br></div><div>This dissertation is mainly focused on the morphological and structural evolution of Sn and Ge based materials. In this dissertation, anin situ focused ion beam-scanning electron microscopy (FIB-SEM) method is developed to investigate the microstructuralevolution of a single electrode particle and correlate with its electrochemical performance. This method is applied toall projects. The first project is to investigate the microstructural evolution of a Sn particle during cycling. Surface structures of Sn particles are monitored and correlated with different states of charge. The second project is to investigate the morphological evolution of Ge particles at different conditions. Different structures (nanopores, cracks, intact surface) appear at different cycling rates. The third project is to study selenium doped Ge (GeSe) anodes. GeSe and Ge particles are tested at the same condition. Se doping forms Li-Ge-Se network, provides fast Li transport and buffers volume change. The fourth project is to study the reaction front of Ge particle during lithiation. Micron-sized Ge particles have two reaction fronts and a wedge shape reaction interface, which is different from the well-known core-shell mode. The fifth project is to investigate antimony (Sb)-coated porous Ge particles. The Sb coating suppresses electrolyte decomposition and porous structure alleviates volume change. The results in this dissertation reveal fundamental information about the reaction mechanism of Sn and Ge anode. The results also show the effects of doping, porous structuring and surface coating of anode materials.</div>
156

Charge optimization of lithium-ion batteries for electric-vehicle application

Pramanik, Sourav 02 March 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In recent years Lithium-Ion battery as an alternate energy source has gathered lot of importance in all forms of energy requiring applications. Due to its overwhelming benefits over a few disadvantages Lithium Ion is more sought of than any other Battery types. Any battery pack alone cannot perform or achieve its maximum capacity unless there is some robust, efficient and advanced controls developed around it. This control strategy is called Battery Management System or BMS. Most BMS performs the following activity if not all Battery Health Monitoring, Temperature Monitoring, Regeneration Tactics, Discharge Profiles, History logging, etc. One of the major key contributor in a better BMS design and subsequently maintaining a better battery performance and EUL is Regeneration Tactics. In this work, emphasis is laid on understanding the prevalent methods of regeneration and designing a new strategy that better suits the battery performance. A performance index is chosen which aims at minimizing the effort of regeneration along with a minimum deviation from the rated maximum thresholds for cell temperature and regeneration current. Tuning capability is provided for both temperature deviation and current deviation so that it can be tuned based on requirement and battery chemistry and parameters. To solve the optimization problem, Pontryagin's principle is used which is very effective for constraint optimization with both state and input constraints. Simulation results with different sets of tuning shows that the proposed method has a lot of potential and is capable of introducing a new dynamic regeneration tactic for Lithium Ion cells. With the current optimistic results from this work, it is strongly recommended to bring in more battery constraints into the optimization boundary to better understand and incorporate battery chemistry into the regeneration process.
157

Operando 7Li Solid State NMR for the Characterization of Battery Anodes

Lorie Lopez, Jose Luis 17 June 2019 (has links)
No description available.
158

<i>In-situ</i> scanning tunneling microscopy studies of the SEI formation on graphite anodes in propylene carbonate

Dehiwala Liyanage, Chamathka H. January 2019 (has links)
No description available.
159

MECHANICAL ABUSE MODELING OF LITHIUM-ION BATTERIES WITH ELECTROCHEMICAL COUPLING

Keshavarzi, Mohammad Mehdi, 0000-0003-0347-2161 January 2023 (has links)
Electric vehicles contain hundreds of high-energy density lithium-ion batteries. The crashworthiness of these vehicles can be improved by better understanding the response of these batteries in an event of an accident or abusive loads. These loads can induce short-circuit and thermal runways in extreme cases. Therefore, an efficient finite element model of a battery that can precisely predict the coupled multi-physics behavior of a cell in a real-world application is desired. This investigation incorporates detailed and homogenized multi-physics modeling of various form factors of lithium-ion batteries. In the first two chapters of this thesis, a multi-physics homogenized model of a pouch cell was developed and validated in a wide range of multi-disciplines of the battery. In contrast to other similar models described in the literature, which are only applicable in certain scenarios, this model has a much broader range of applications due to the innovative techniques developed for material calibration and cell modeling. In addition, due to the homogenized nature and computational cost efficiency of this technique, the developed model has significance in the crashworthiness analysis of battery packs and electric vehicles where hundreds of these batteries exist. In the final chapter, a detailed layered model of an 18650 cylindrical cell was developed. Component and cell-level tests were performed on the cell to calibrate the material properties and extract the geometries of all the components of the cell. This model is the first of its kind that precisely predicts the load-displacement response and shape of deformation in various loading scenarios. This developed model has crucial importance in the safety assessment of the batteries by providing insight into the sequence of deformation of the internal layers and components and their interplay during mechanical abuse loadings. Overall, the two developed models in this thesis provide battery-related industries with a tool to improve the safety of future electrified industries. / Mechanical Engineering
160

The Performance of Structured High-Capacity Si Anodes for Lithium-Ion Batteries

Fan, Jui Chin 01 June 2015 (has links) (PDF)
This study sought to improve the performance of Si-based anodes through the use of hierarchically structured electrodes to provide the nanoscale framework needed to accommodate large volume changes while controlling the interfacial area – which affects solid-electrolyte interphase (SEI) formation. To accomplish this, electrodes were fabricated from vertically aligned carbon nanotubes (VACNT) infiltrated with silicon. On the nanoscale, these electrodes allowed us to adjust the surface area, tube diameter, and silicon layer thickness. On the micro-scale, we have the ability to control the electrode thickness and the incorporation of micro-sized features. Treatment of the interfacial area between the electrolyte and the electrode by encapsulating the electrode controls the stabilization and reduction of unstable SEI. Si-VACNT composite electrodes were prepared by first synthesizing VACNTs on Si wafers using photolithography for catalyst patterning, followed by aligned CNT growth. Nano-layers of silicon were then deposited on the aligned carbon nanotubes via LPCVD at 200mTorr and 535°C. A thin copper film was used as the current collector. Electrochemical testing was performed on the electrodes assembled in a CR2025 coin cell with a metallic Li foil as the counter electrode. The impact of the electrode structure on the capacity at various current densities was investigated. Experimental results demonstrated the importance of control over the superficial area between the electrolyte and the electrode on the performance of silicon-based electrodes for next generation lithium ion batteries. In addition, the results show that Si-VACNT height does not limit Li transport for the range of the conditions tested.

Page generated in 0.1537 seconds