• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 35
  • 13
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 280
  • 280
  • 280
  • 73
  • 66
  • 55
  • 50
  • 40
  • 36
  • 30
  • 30
  • 29
  • 28
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Elaboration of flexible lithium - ion electrodes by printing process / Réalisation d’électrodes souples pour batteries lithium-ion par procédé d’impression

El Baradai, Oussama 24 April 2014 (has links)
Le travail présenté dans ce mémoire concerne la réalisation des batteries souples lithium-ion. Il a comme objectif le développement de nouveaux procédés comme l'impression par sérigraphie pour la fabrication de batteries et le remplacement des polymères issus de la chimie de synthèse par des matériaux bio-sourcés utilisables en milieu aqueux. Les résultats obtenus ont montré qu'il est possible de formuler des encres aqueuses à base des matériaux actifs classiquement utilisés pour l'élaboration d'électrodes (anode et cathode) de batterie Li-ion mais avec des liants dérivés de cellulose en substitution du PVDF qui intègre les formulations standards. Cette encre, dont les propriétés rhéologiques sont compatibles avec le procédé d'impression sérigraphique, permet l'obtention d'électrodes présentant des propriétés spécifiques aux bons fonctionnements de la batterie. Les résultats obtenus ont montré que cette technique d'impression du séparateur pouvait être utilisée pour remplacer la technique de déposition classique des matières actives sur les collecteurs de courant, basée sur un procédé d'enduction à lame (blade coating). Enfin, une batterie lithium-ion imprimée a pu être élaborée en utilisant la stratégie d'impression recto/verso du séparateur avec l'intégration des collecteurs de courant pendant la phase d'impression, validant ainsi cette nouvelle technique d'assemblage. / The work presented in this manuscript describes the manufacturing of lithium-ion batteries on papers substrates by printing technique. Its aim is the development of new up scalable and large area techniques as screen printing for the fabrication of lithium-ion batteries and the replacement of conventional toxic components by bio-sourced one and water based solvent. First results shows how it is possible to formulate cellulose based ink tailored for screen printing technology with suitable properties for lithium-ion batteries requirements. Electrodes were manufactured and tested from a physical and electrochemical point of view and two strategies were proposed to enhance performances. Finally, by considering results obtained for the electrodes, a full cell was manufactured with a new assembling strategy based on: front / reverse printing approach and the embedding of the current collectors during printing stage. As a final point cells were characterized and compared with others obtained by conventional assembling strategies.
192

Desenvolvimento de material híbrido anódico para baterias de íons de Li baseado em carvão ativado e nanotubos de carbono decorados com prata / Development of hybrid anode material for Li ion batteries based on activated carbon and carbon nanotubes decorated with silver.

Giuliana Hasegava Takahashi 16 April 2015 (has links)
Neste trabalho, foi desenvolvido um material híbrido inédito carvão ativado/nanotubos de carbono/nanopartículas de prata para as aplicações em bateria de íons de lítio e capacitor eletroquímico de dupla camada. O compósito foi preparado por crescimento dos nanotubos de carbono diretamente sobre o carvão ativado via deposição química de vapor e depois nanopartículas de prata foram incorporadas no carvão ativado/nanotubos de carbono. A morfologia do compósito foi analisada por microscopia eletrônica de varredura. Investigação das propriedades de intercalação de lítio no carvão ativado (CA), carvão ativado/nanotubos de carbono (CA/NTC), carvão ativado/prata (CA/Ag) e carvão ativado/nanotubos de carbono/prata (CA/NTC/Ag) foi conduzida por voltametria cíclica e ciclos de carga/descarga, utilizando dois diferentes eletrólitos. Verificou-se que o ânodo de CA/NTC/Ag apresenta mais elevado valor de capacidade específica reversível que a grafita em eletrólito comercial, provavelmente devido à rede tridimensional com elevada condutividade eletrônica formada por nanotubos de carbono e nanopartículas de prata nos poros e nas rugosidades do substrato. Além disso, os nanotubos de carbono podem exibir elevada capacidade de armazenamento de lítio. Outra vantagem do CA/NTC/Ag é que a rede de nanotubos de carbono acomoda a expansão de volume das partículas de prata durante a ciclagem do eletrodo, mantendo-as bem adsorvidas na superfície do CA/NTC. Os resultados confirmaram a existência do sinergismo entre os componentes do CA/NTC/Ag, que promove características eletroquímicas superiores àquelas dos constituintes isolados. / In this work, an unpublished hybrid material activated carbon/carbon nanotubes/silver nanoparticles was developed for lithium ion battery and electrochemical double layer capacitor applications. The composite was prepared by growing carbon nanotubes directly on the activated carbon via chemical vapor deposition and after silver nanoparticles were incorporated on the activated carbon/carbon nanotubes. The composites morphology was analyzed by scanning electron microscopy. Investigation of lithium intercalation properties in activated carbon (AC), activated carbon/carbon nanotubes (AC/CNT), activated carbon/silver (AC/Ag) and activated carbon/carbon nanotubes/silver (AC/CNT/Ag) was carried out by cyclic voltammetry and charge/discharge cycles by making use of two different electrolytes. It was found that the AC/CNT/Ag anode presents higher reversible specific capacity value in comparison with graphite in commercial electrolyte, probably due to the three dimensional network with high electronic conductivity formed by carbon nanotubes and silver nanoparticles in the substrates pores and roughness. Furthermore, carbon nanotubes can exhibit high lithium storage capacity. Another advantage of the AC/CNT/Ag is that the network of carbon nanotubes accommodates volume expansion of the silver particles during electrode cycling, keeping them well adsorbed on the surface of the AC/CNT. The results confirmed the existence of synergism between the components of the AC/CNT/Ag, which promotes electrochemical characteristics that are higher than those of the individual constituents.
193

Eletroinserção de íons lítio em matrizes auto-organizadas de V2O5, poli(etilenoimina) e nanopartículas de carbono / Electroinsertion of lithium ions in self-assembled matrices composed of V2O5, poly(ethyleneimine), and carbon nanoparticles

Ana Rita Martins dos Santos 01 August 2013 (has links)
Materiais auto-organizados constituídos de V2O5 xerogel, poli(etilenoimina) (PEI) e nanopartículas de carbono (NpCs) foram obtidos por meio da técnica camada-por-camada (LbL). A metodologia aplicada permitiu a obtenção de filmes finos com elevado controle de espessura além de permitir um crescimento linear dos filmes, denominados neste trabalho V2O5/PEI e V2O5/PEI/NpCs. Além disso, o desempenho eletroquímico dos materiais auto-organizados foi comparado a um eletrodo de V2O5. Análises de FTIR mostraram que interações específicas entre os grupos amina do PEI e os grupos carboxila do V2O5 são responsáveis pelo crescimento do filme. Estas interações permitem a formação de um campo eletrostático capaz de blindar as interações entre os íons lítio e os oxigênios da vanadila (V=O) e, por consequência, são responsáveis pelo aumento na mobilidade iônica dos íons lítio no interior da matriz hospedeira e, portanto, um aumento na capacidade de armazenamento de carga. Resultados obtidos através de medidas de carga/descarga mostram que o V2O5/PEI/NpCs apresenta uma melhor desempenho do que os demais materiais estudados neste trabalho. Estes resultados mostram que a capacidade específica do V2O5/PEI/NpCs foi de 137 mA h g-1 para a menor densidade de corrente aplicada e aproximadamente 1,6 vezes maior do que os valores de capacidade específica para os outros materiais para a maior densidade de corrente aplicada. Além disso, estas medidas permitiram a observação de uma menor variação na razão estequiométrica máxima (xmáx) em função das densidades de corrente aplicadas para os filmes auto-organizados, fato este relacionado a uma maior mobilidade iônica dos íons lítio no interior dessas matrizes. Os resultados obtidos a partir de espectroscopia de impedância eletroquímica (EIS) mostraram que a difusão dos íons lítio no interior das matrizes auto-organizadas é maior do que no caso do V2O5, cujos valores do coeficiente de difusão foram de 1,64 x 10-15, 1,21 x 10-14 e 2,26 x 10-14 cm2 s-1 para os filmes V2O5, V2O5/PEI e V2O5/PEI/NpCs, respectivamente. Sendo assim, o polímero e as NpCs promoveram novos caminhos condutores e permitiram a conexão elétrica entre camadas isoladas da matriz V2O5. Dessa forma, novos nanocompósitos foram obtidos visando demonstrar o método de auto-organização empregado para melhorar o transporte de carga em matrizes hospedeiras. / Self-assembled materials constituted of V2O5 xerogel, poly (ethyleneimine) (PEI), and carbon nanoparticles (CNPs) were obtained by the layer-by-layer (LbL) technique. The applied methodology permitted the obtainment of thin films with high thickness control and also permitted a linear growth of the films, which will be named V2O5/PEI and V2O5/PEI/CNPs. Besides, the electrochemical performance of the self-assembled materials was compared to a V2O5 electrode. FTIR analyses showed that the specific interactions between the amine groups of PEI and the vanadyl groups of the V2O5 are responsible for the film growth. These interactions permitted the formation of an electrostatic shield capable of hindering the interactions between the lithium ions and the vanadyl oxygen atoms (V=O) and are consequently responsible for the enhancement on the ionic mobility of the lithium ions within the host matrix, leading to a higher energy storage capability. Results obtained by the charge/discharge measurements showed that V2O5/PEI/CNPs presents a better performance than the other materials studied for this research. These results demonstrated that the specific capacity of the V2O5/PEI/CNPs was 137 mA h g-1 under the lowest current density applied and approximately 1.6 times higher than the specific capacity values obtained for the other materials under the highest current density applied. Moreover, it was observed that the variation of the maximum stoichiometric ratio (xmax) as a function of the current density is lower for the self-assembled materials than for the V2O5 electrode, which can be related to the higher ionic mobility of the lithium ion within the self-assembled materials. Electrochemical Impedance Spectroscopy (EIS) data demonstrated that the diffusion of the lithium ions within the self-assembled materials is higher than within the V2O5 electrode, and the diffusion coefficients were 1.64 x 10-15, 1.21 x 10-14 e 2.26 x 10-14 cm2 s-1 for V2O5, V2O5/PEI and V2O5/PEI/CNPs, respectively. Thus, the polymer and the CNPs provided new conducting pathways and connected isolated V2O5 chains in the host matrix. Therefore, novel spontaneous nanocomposites were formed, aiming to demonstrate the self-assembled method adopted for improving charge transport within host matrices.
194

Nanomembranes Based on Nickel Oxide and Germanium as Anode Materials for Lithium-Ion Batteries

Sun, Xiaolei 27 September 2017 (has links) (PDF)
Rechargeable lithium-ion batteries are now attracting great attention for applications in portable electronic devices and electrical vehicles, because of their high energy density, long cycle and great convenience. For new generations of rechargeable lithium-ion batteries, they applied not only to consumer electronics but also especially to clean energy storage and hybrid electric vehicles. Therefore, further breakthroughs in electrode materials that open up a new important avenue are essential. Graphite, the most commonly used commercial anode material, has a limited reversible lithium intercalation capacity (372 mAh g-1). In this regard, tremendous efforts have been made towards even further improving high capacity, excellent rate capability, and cycling stability by developing advanced anode materials. This work focuses on the lithium storage properties of nickel oxide (NiO) and germanium (Ge) nanomembranes anodes mainly fabricated by electron-beam evaporation. Specifically, NiO is selected for conversion-type material because of high theoretical specific capacity of 718 mAh g-1 and easily obtained material. The resultant curved NiO nanomembranes anodes exhibit ultrafast power rate of 50 C (1 C = 718 mA g-1) and good capacity retention (721 mAh g-1, 1400 cycles). Remarkably, multifunctional Ni/NiO hybrid nanomembranes were further fabricated and investigated. Benefiting from the advantages of the intrinsic architecture and the electrochemical catalysis of metallic nickel, the hybrid Ni/NiO anodes could be tested at an ultrahigh rate of ~115 C. With Ge as active alloying-type material (1624 mAh g-1), the effect of the incorporated oxygen to the lithium storage properties of amorphous Ge nanomembranes is well studied. The oxygen-enabled Ge (GeOx) nanomembranes exhibit improved electrochemical properties of highly reversible capacity (1200 mAh g-1), and robust cycling performance.
195

Etude des risques d'arc électrique dans les batteries lithium-ion / Electric arc risks study in lithium-ion batteries

Augeard, Amaury 10 November 2015 (has links)
La sûreté de fonctionnement des batteries est un point clé pour la croissance de ce marché et le déploiement de solutions hybrides afin de réduire la consommation d’énergie. L’électrification croissante de ces systèmes ne fait qu’aggraver l’augmentation de l’occurrence de ce problème qui bien que connu depuis longtemps dans le domaine des applications DC ne fait l’objet de recherches intensives que depuis peu comme en témoigne le développement récent des premiers détecteurs d’arc pour l’aviation. L’arc dans les batteries représente aujourd’hui un risque potentiel pour l’intégrité du matériel et des personnes du fait de l’utilisation des batteries au sein d’applications industrielles de fortes puissances. Afin de caractériser ce risque et d’en évaluer la dangerosité, plusieurs bancs d’essais sont réalisés au niveau élément et système afin de reproduire le phénomène d’arc électrique. Les essais réalisés permettent d’extraire les caractéristiques intrinsèques de l’arc. En complément de cette caractérisation, un modèle d’arc permettant d’évaluer les paramètres et d’améliorer la compréhension de ce phénomène est réalisé. Des solutions de limitation, voire de suppression de l’arc issues de cette étude sont proposées. Parmi ces nombreuses solutions, l’utilisation de capteurs optiques, les méthodes numériques pour le traitement des signaux issus de l’arc, la modification de l’architecture batterie ainsi que l’augmentation du niveau de tension lors de l’amorçage de l’arc ouvrent la voie à la conception de systèmes de batteries innovants et plus sûrs en termes de fiabilité, sécurité et de robustesse. Les nombreuses perspectives de recherches proposées permettront également d’améliorer la couverture de ce risque. / The operational security of batteries is a key element in the growth of this market and the deployment of hybrid solutions to reduce energy consumption.The increasing electrification of these systems can only exacerbate the occurrence ratio increase of this problem. Although known for a number of years in the field of DC applications, electric arcs are the subject of intensive research for a short time as shown by the recent development of the first arc sensors for aviation. Electric arcs in batteries currently represent a potential risk to the integrity of the equipment and people because of the use of these batteries in industrial high power applications. To characterize this risk and assess its dangerousness, several test benches were designed at the cell and system level to reproduce the electric arc phenomenon. The tests carried out allow extracting the intrinsic characteristics of the arc. In addition to this characterization, an arc model to evaluate the parameters and improve the understanding of this phenomenon is realized. Limiting mitigation solutions or suppression of the arc resulting from this study are proposed. Among the many solutions, the use of optical sensors, the numerical methods for digital signal processing from the arc, the modification of the architecture as well as the increase of the arc ignition voltage pave the way for the design of innovative and safer batteries systems in terms of reliability, security and robustness. The numerous proposed research perspectives will also improve the coverage of this risk.
196

Electrochemical Investigations Of Sub-Micron Size And Porous Positive Electrode Materials Of Li-Ion Batteries

Sinha, Nupur Nikkan 05 1900 (has links) (PDF)
A Comprehensive review of literature on electrode materials for lithium-ion batteries is provided in Chapter 1 of the thesis. Chapter 2 deals with the studies on porous, sub-micrometer size LiNi1/3Co1/3O2 as a positive electrode material for Li-ion cells synthesized by inverse microemulsion route and polymer template route. The electromechanical characterization studies show that carbon-coated LiNi1/3Co1/3O2 samples exhibit improved rate capability and cycling performance. Furthermore, it is anticipated that porous LiNi1/3Co1/3O2 could be useful for high rates of charge-discharge cycling. Synthesis of sub-micrometer size, porous particles of LiNi1/3Co1/3O2 using a tri-block copolymer as a soft template is carried out. LiNi1/3Co1/3O2 sample prepared at 900ºC exhibits a high rate capability and stable capacity retention of cycling. The electrochemical performance of LiNi1/3Co1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. Chapter 4 involves the synthesis of sub-micrometer size particles of LiMn2O4 in quaternary microemulsion medium. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g-1 at C/5 rate and there is moderate decrease in capacity by increasing the rate of charge-discharge cycling. Studies also include charge-discharge cycling as well as ac impedance studies in temperature range from -10 to 40º C. Chapter 5 reports the synthesis of nano-plate LiFePO4 by polyol route starting from two reactants, namely, FePO42H2O and LiOH.2H2O. The electrodes fabricated out of nano-plate of LiFePO4 exhibit a high electrochemical activity. A stable capacity of about 155 mAh g-1 is measured at 0.2 C over 50 charge-discharge cycles. Mesoporous LiFePO4/C composite with two sizes of pores is prepared for the first time via solution-based polymer template technique. The precursor of LiFePO4/C composite is heated at different temperatures in the range from 600 to 800ºC to study the effect of crystalllinity, porosity and morphology on the electrochemical performance. The compound obtained at 700ºC exhibits a high rate capability and stable capacity retention on cycling with pore size distribution around 4 and 46nm. In Chapter 6, the electrochemical characterization of LiMn2O4 in an aqueous solution of 5 M LiNO3 is reported. A typical cell employing LiMn2O4 as the positive electrode and V2O5 as the negative electrode was assembled and the characterized by charge-discharge cycling in 5 M LiNO3 aqueous electrolyte. Furthermore, it is shown that Li+-ion in LiMn2O4 can be replaced by other divalent ions resulting in the formation of MMn2O4 (M = Ca, Mg, Ba and Sr) in aqueous M(NO3)2 electrolytes by subjecting LiMn2O4 electrodes to cyclic voltametry. Cyclic voltammetry and chronopotentiometry studies suggest that MMn2O4 can undergo reversible redox reaction by intercalation/deintercalation of M2+-ions in aqueous M(NO3)2 electrolytes.
197

Influence Of Nanostructuring On Electrochemical Performance Of Titania-Based Electrodes And Liquid Electrolytes For Rechargeable Lithium-Ion Batteries

Das, Shyamal Kumar 10 1900 (has links) (PDF)
The present thesis deals with the beneficial influence of nanostructuring on electrochemical performance of certain promising electrode and electrolyte materials for lithium-ion batteries (LIBs). Electrochemical performances of chosen electrodes and electrolytes have been presented in a systematic and detailed manner via studies related to both transport and lithium storage. Titanium dioxide (TiO2) or titania, a promising non-carbonaceous anode material for LIBs was chosen for the study. As part of the study, variety of nanostructured titania were synthesized. In general, all materials exhibited high lithium storage ( theoretical value for lithium storage in titania) and some of them showed exemplary rate capability, typically desired for modern lithium-ion batteries. Studies related to performance of these materials and mechanistics of lithium storage and kinetics are presented in Chapters 2-5. “Soggy sand” electrolyte, a promising soft matter electrolyte for LIBs was studied on the electrolyte side. Ion transport, mechanical strength and electrochemical properties of “soggy sand” electrolytes synthesized via dispersion of various surface chemically functionalized silica particles dispersed in model as well as LIB relevant electrolytes were studied in this thesis. Extensive physico-chemical and battery performance studies of “soggy sand” electrolytes are discussed in Chapters 6-8. A brief discussion of the contents and highlights of the individual chapters are described below: Chapter 1 briefly discusses the importance of electrochemical power sources as a viable green alternative to the combustion engine. Various facets of rechargeable LIBs, one of the most important electrochemical storage devices, are presented following the general discussion on electrochemical power devices. The importance of nanostructuring of electrodes with special emphasis on anodes for high lithium storage capacities and rate capabilities are also discussed in the opening chapter. The various advantages and disadvantages of the most commonly used electrolytes in LIB i.e. the liquid electrolytes are also discussed in Chapter 1. Suggestions for improvement of the physico-chemical properties of liquid electrolytes especially via nanostructuring (demonstrated via dispersions of fine oxide particles in liquid electrolytes in Chapters 6-8) using the concept of Heterogeneous doping are discussed in detail. A brief description on the importance of rheology for comprehension of soft matter microstructure is also provided in this chapter. Chapter 2 discusses composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route as prospective anode for rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount of carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 oC at 6 h, calcination at 500 oC under air, BET surface area 80 m2g-1) was 334 mAhg-1 (approximately 1 Li) at current rate of 66 mAg-1. High storage capacity and good cyclability is attributed to the nanostructuring (i.e. mesoporosity) of TiO2 as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1. The electrochemical performance of the mesoporous carbon-TiO2 spheres has been compared with nonporous TiO2 spheres, normal mesoporous TiO2 and bulk TiO2. Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics in nanoparticles of anatase polymorph of titania is discussed in Chapter 3. Sol-gel synthesized nanoparticles of titania (particle size ~ 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size  10 nm) displayed immensely superior cyclability and rate capability (higher current rates  4 Ag-1) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystals enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of un-modified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in decrease in the irreversible capacity observed in case of nanoparticles without any carbon coating. Chapter 4 discusses the morphology and electrochemical performance of mixed crystallographic phase titania nanotubes and nanosheets for prospective application as anode in rechargeable lithium-ion batteries. Hydrothermally grown nanotubes/nanosheets of titania (TiO2) and carbon/silver-titania (C/Ag-TiO2) comprise a mixture of both anatase and TiO2(B) crystallographic phases. The first cycle capacity (at current rate = 10 mAg-1) for bare TiO2 nanotubes was 355 mAhg-1 (approximately 1.06 Li), which is higher than both the theoretical capacity (335 mAhg-1) as well as reported values for pure anatase and TiO2(B) nanotubes. Higher capacity is attributed to a combination of presence of mixed crystallographic phases of titania as well as trivial size effects. The surface area of bare TiO2 nanotubes was very high being equal to 340 m2g-1. Surface modification of the TiO2 nanotubes via amorphous carbon and Ag nanoparticles resulted in significant improvement in battery performance. The first cycle irreversible capacity loss can be minimized via effective coating of the surface. Carbon coated TiO2 nanotubes showed superior performance than Ag nanoparticle coated TiO2 nanotubes in terms of long term cyclability. Unlike Ag nanoparticles which are randomly distributed over the TiO2 nanotubes, the effective homogeneous carbon coating forms an efficient percolation network for the conducting species thus exhibiting better battery performance. The C-TiO2 and Ag-TiO2 nanotubes showed a better rate capability i.e. higher capacities compared to bare TiO2 nanotubes in the current range 0.055-2 Ag-1. Although titania nanosheets retains mixed crystallographic phases, the lithium battery performance (first cycle capacity = 225 mAhg-1) is poor compared to TiO2 nanotubes. It is attributed to lower surface area (22 m2g-1) which resulted in lesser electrode/electrolyte contact area and inefficient transport pathways for Li+ and e-. Implications of iron on electrochemical lithium insertion/removal capacity of iron (Fe3+) doped anatase TiO2 is discussed in Chapter 5. Iron doped anatase TiO2 nanoparticles with different doping concentrations were synthesized by simple sol-gel method. The electrochemistry of anatase TiO2 is observed to be a strong function of concentration of iron (Fe3+). A high 1st cycle discharge capacity of 704 mAhg−1 (2.1 mol of Li) and 272 mAhg−1 (0.81 mol of Li) at the 30th discharge cycle with Coulombic efficiency greater than 96% has been observed for 5% iron (Fe3+) doped TiO2 at a current density of 75 mAg−1. Additional increase in the iron (Fe3+) concentrations deteriorates the lithium storage of TiO2. An improvement in lithium storage of more than 50% is noticed for 5% iron (Fe3+) doped TiO2 compared to pure anatase TiO2 which shows an initial discharge capacity of 279 mAhg−1. The anomalous lithium storage behavior in all the iron (Fe3+) doped TiO2 has been accounted, in addition to homogeneous Li insertion in the octahedral sites, on the basis of formation of metallic Fe and Li2O during initial lithiation process and subsequent heterogeneous interfacial storage between Fe and Li2O interface. Chapter 6 discusses in a systematic manner the crucial role of oxide surface chemical composition on ion transport in “soggy sand” electrolytes. A “soggy sand” electrolytic system comprising of aerosil silica functionalized with various hydrophilic and hydrophobic moeities dispersed in lithium perchlorate ethylene glycol solution ( = 37.7) was used for the study. Detailed rheology studies show that the attractive particle network in case of the composite with unmodified aerosil silica (with surface silanol groups) is most favorable for percolation in ionic conductivity as well as rendering the composite with beneficial elastic mechanical properties. Though weaker in strength compared to the composite with unmodified aerosil particles, attractive particle networks are also observed in composites of aerosil particles with surfaces partially substituted with hydrophobic groups. However, ionic conductivity is observed to be dependent on the size of the hydrophobic moiety. No spanning attractive particle network was formed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol) and as a result no percolation in ionic conductivity was observed. The composite with hydrophilic particles was a sol contrary to gels obtained in case of unmodified aerosil and partially substituted with hydrophobic groups. Chapter 7 also discusses the influence of oxide surface chemical composition but additionally the role of solvent on ion solvation and ion transport of “soggy sand” electrolytes. Compared to the liquid electrolyte in Chapter 6, a lower dielectric constant liquid electrolyte was employed for the study in this chapter. A “soggy sand” electrolyte system comprising of dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate-methoxy polyethylene glycol solution ( = 10.9) was employed for the study. Static and dynamic rheology measurements again showed formation of an attractive particle network in case of the composite with unmodified aerosil silica (i.e. with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e. for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. However, this time around no enhancement in ionic conductivity compared to the liquid electrolyte was observed in case of the unmodified silica. This is attributed to the existence of a very strong particle network which leads to the “expulsion” of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity as a function of the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol and no percolation in ionic conductivity was observed. Chapter 8 describes the influence of dispersion of uniformly sized mono-functional or bi-functional (“Janus”) particles on ionic conductivity in lithium battery solutions and it’s implications on battery performance. Mono-functionalized (hydrophilic or hydrophobic) and bi-functionalized Janus (hydrophilic and hydrophobic) particles form physical gels of varying strength over a wide range of concentration (0.1    0.4; , oxide volume fraction). While the composites with mono-functionalized particles display shear thinning typical of gels (due to gradual breaking up spanning particle network held together by hydrogen/van der Walls force), the bi-functionalized “Janus” particles exhibit both complementary properties of gel and sol. The latter observation is interpreted in terms of existence of both hydrogen and van der Waals force arising out of the particle arrangement which get perturbed under the influence of external shear. Composites with homogeneous hydrophilic surface group show the highest ionic conductivity whereas the homogeneous hydrophobic surfaces exhibit superior electrode/electrolyte interface stability and battery cyclability. The Janus particles did not show any enhancement in ionic conductivity however, battery performance is highly satisfactory taking intermediate values between the homogeneously functionalized hydrophilic and hydrophobic particle composites.
198

Optimisation de matériaux composites Si/Intermétallique/Al/C utilisés comme électrode négative dans des accumulateurs Li-ion / Optimization of composite materials Si/Intermetallic/Al/C used as negative electrode in Li-ion batteries

Thaury, Claire 20 February 2015 (has links)
Ce mémoire est consacré à l'étude de matériaux composites innovants du type Si/Intermétallique/Al/C utilisés comme matériaux d'électrodes négatives pour les batteries lithium ion. L'objectif de ces travaux est d'optimiser un matériau de composition 20Ni-48Sn-20Si-3Al-9C ayant été développé auparavant pour obtenir les meilleures performances électrochimiques. Ce matériau se présente sous la forme de nanoparticules de silicium enrobées par une matrice submicrométrique. Plusieurs stratégies ont été mises en œuvre : optimisation des teneurs en carbone et en silicium, influence de l'état de surface du silicium sur les propriétés électrochimiques et remplacement de l'intermétallique Ni3+xSn4 par d'autres alliages : un composé zinc-aluminium Al0, 23Zn0,77 et deux intermétalliques Cu6Sn5 et CoSn. Les composés intermétalliques ont été synthétisés par métallurgie des poudres et les matériaux composites par mécanosynthèse. Les propriétés chimiques et structurales de ces matériaux ont été déterminées par microsonde de Castaing, diffraction des rayons X et microscopies électroniques. Les caractérisations électrochimiques ont été réalisées en demi-cellules (Swagelok et bouton) par cyclage galvanostatique et par voltamétrie cyclique. Ce mémoire détaille l'influence des paramètres étudiés sur les propriétés structurales. Une large étude a notamment été menée sur l'influence des teneurs en carbone et en silicium sur l'obtention d'une matrice homogène, une condition nécessaire pour atteindre de bonnes performances électrochimiques. Le même type d'étude a été mené sur l'influence de l'effet de surface du Si et la nature de l'alliage utilisé. Il a par exemple été montré de meilleurs résultats électrochimiques pour les intermétalliques présentant une réactivité modérée avec le silicium lors du broyage mécanique. Les meilleures performances ont été obtenues pour la composition Ni0.13Sn0.15Si0.26Al0.04C0.42. Ce composite présente une capacité de 650 mAh.g-1 pendant 1000 cycles. L'utilisation d'un silicium carboné en surface améliore la stabilité en cyclage de la SEI même si son utilisation reste à optimiser / This study focuses on the optimization of innovative composite materials Si/Intermetallic/Al/C used as negative electrode in lithium-ion batteries. The aim of this work is optimization of the composition for the material (20Ni-48Sn-20Si-3Al-9C) to improve its electrochemical performances. All materials are made up of silicon nanoparticles embedded in a sub micrometrical matrix. Several issues have been studied in this essay: optimization of the silicon and carbon contents, influence of the silicon surface composition, and substitution of the former intermetallic Ni3+xSn4 by other ones: zinc aluminium compound Al0,23Zn0,77 and two intermetallics Cu6Sn5 et CoSn. Metallic compounds and composites have been synthesised by powder metallurgy and mechanical alloying, respectively. Their chemical and structural properties have been determined by electron probe microanalysis, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Electrochemical characterisations have been carried out by galvanostatic cycling and cyclic voltammetry in coin and Swagelok half cells. This report details the influence of the studied parameters on the structural properties of the composite materials. A large study was devoted to the influence of carbon and silicon contents on the achievement of a homogeneous matrix, which is mandatory to get good electrochemical performances. Influence of the composition of silicon surface and intermetallic on the microstructure and electrochemical properties of the composites was also studied. Thus, we have shown that intermetallics reacting moderately with Si during mechanical alloying have better electrochemical properties. The best electrochemical properties have been obtained for the nominal composition Ni0.13Sn0.15Si0.26Al0.04C0.42. This material provides a reversible capacity of 650 mAh.g-1 during 1000 cycles. The use of carbon coated silicon improves the stability of the SEI during cycling even if this composite still has to be optimized
199

Generalized Homogenization Theory and its Application to Porous Rechargeable Lithium-ion Batteries

Juan Campos (9193691) 12 October 2021 (has links)
<p>A thermodynamically consistent coarsed-grained phase field model was developed to find the conditions under which a heterogeneous porous electrode can be treated as homogeneous in the description of Lithium-ions in rechargeable batteries. Four regimes of behavior under which the transport phenomena can be homogenized to describe porous LIBs were identied: regime (a), where the model is inaccurate, for physically accessible particle packings of aspect ratios smaller than c/a = 0.5 and electrode porosities between 0.34 to 0.45; regime (b), where the model is valid, for particles of aspect ratios greater than c/a = 0.7 and electrode porosities greater than 0.35; regime (c), where the model is valid, but the microstructures are physically inaccessible, and correspond to particles with aspect ratios greater than c/a = 0.7 and electrode porosities smaller than 0.34; and regime (d), where the model is invalid and the porous microstructures are physically inaccessible, and correspond to particles with aspect ratios smaller than c/a = 1 and electrode porosities smaller than 0.34.</p> <p>The developed formulation was applied to the graphite | LixNi1/3Mn1/3Co1/3O2 system to analyze the effect of microstructure and coarsed-grained long-range chemomechanical effects on the electrochemical behavior. Specically, quantiable lithium distribution populations in the cathode, as a result of long range interactions of the diffuse interface, charge effects and mechanical stresses were identified: i) diffusion limited population due to negligible composition gradients, ii) stress-induced population as a result of chemically induced stresses, and iii) lithiation-induced population, as a consequence of the electrochemical potential gradients.</p>
200

Surface Active Sites: An Important Factor Affecting the Sensitivity of Carbon Anode Material towards Humidity

Fu, L. J., Zhang, H. P., Wu, Y. P., Wu, H. Q., Holze, R. 31 March 2009 (has links)
In this paper, we report that various kinds of active sites on graphite surface including active hydrophilic sites markedly affect the electrochemical performance of graphite anodes for lithium ion batteries under different humidity conditions. After depositing metals such as Ag and Cu by immersing and heat-treating, these active sites on the graphite surface were removed or covered and its electrochemical performance under the high humidity conditions was markedly improved. This suggests that lithium ion batteries can be assembled under less strict conditions and that it provides a valuable direction to lower the manufacturing cost for lithium ion batteries.

Page generated in 0.0962 seconds