• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 35
  • 13
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 286
  • 286
  • 286
  • 74
  • 70
  • 58
  • 50
  • 43
  • 37
  • 31
  • 30
  • 30
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Design, Development and Structure of Liquid and Solid Electrolytes for Lithium Batteries

Al-Salih, Hilal 11 September 2023 (has links)
Energy storage is crucial for intermittent renewable energy sources, electric vehicles, and portable devices. The continuously increasing energy consumption in these industries necessitates the enhancement of commercial lithium-ion batteries (LIB), especially regarding their safety and energy density. Historically, aqueous electrolytes were the norm in the battery industry. Prior to the development of lithium batteries, most commercially significant batteries used water as the solvent. In the past decade, "highly concentrated" electrolytes resurrected the notion of an aqueous lithium-ion battery (ALIB). Significant efforts have been made since then to comprehend the interfacial stability of these high-concentration electrolytes, and make them suitable for use in batteries especially high voltage ones. Another candidate for future batteries is All-Solid-State Batteries (ASSB) as they have the potential to double, or even triple, the energy density figures we currently achieve in LIBs mainly due to their ability to utilize lithium metal anode which has the highest specific capacity among anodes (3860 mAh g⁻¹), lowest reduction potential (-3.04 V vs SHE), and low density (0.53 g cm⁻³). This thesis first proposes a phenomenological model to describe the microstructure of aqueous electrolyte and the relation between their phase diagrams with ionic conductivity; highlighting a common correlation between the eutectic composition and peak ionic conductivity in conductivity isotherms. we then propose an empirical model correlating ionic conductivity with both molar concentration and temperature. The aim of this portion of the thesis is to provide an in depth understanding of aqueous electrolytes' physical properties in a way that can help researchers optimize the energy density and the cost of ALIBs. Moving further, the thesis presents two novel composite solid electrolytes (CSE) that were developed and fully characterized. Both of which were composed of the following four components; polyethylene oxide (PEO), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, lithium lanthanum titanate (LLTO) perovskite inorganic ceramic and the polymer plasticizer succinonitrile (SN). The careful formulation of these CSEs was based on the trade-off between film forming ability and ionic conductivity. The optimized polymer rich CSE proved to have better characteristics when compared to its ceramic rich alternative. ASSBs employing both CSEs were successfully charged and discharged when coupled with lithium metal anode and in-lab prepared composite cathode. The developed thin and flexible CSEs could be utilized in small applications (Wh-KWh) such as in consumer electronics and flexible biomedical devices (e.g., pacemakers) or larger applications (kWh-MWh) such as in EVs and large format storage for the electrical grid.
222

Discrete element modelling of the mechanical behaviour of lithium-ion battery electrode layers

Lundkvist, Axel January 2024 (has links)
Since their introduction in the late 20th century, lithium-ion batteries have become the leading battery technology for portable devices and electric vehicles due to their high energy density and rechargeability. However, the increasing demand for a longer battery life span is hindered by the fading of the battery’s charge capacity over prolonged use. This reduction in charge capacity stems from electrochemical and mechanical degradation of the battery cells. The main research focus in the literature has been on the chemical degradation of battery cells. However, the mechanical degradation also substantially contributes to the battery’s capacity degradation. Therefore, it is crucial to understand the mechanical properties of the battery cells to be able to mitigate mechanical degradation. The battery’s mechanical degradation stems from the electrode layers’ constituents. This thesis aims to model the positive electrode’s mechanical properties by recreating its granular microstructure using the discrete element method. In Papers 1 and 2, a discrete element method modelling framework is developed, which can reconstruct a positive electrode layer of a lithium-ion battery, simulate manufacturing processing steps, and determine the mechanical properties of the electrode layer. The framework uses two contact models, representing the positive electrode material in the form of particles and a binder agent, which gives the electrode layer its structural integrity. The framework is used to link the mechanical behaviour of the electrode particles and the binder agent to the mechanical behaviour of the entire electrode layer. The framework is able to capture the layer’s pressure sensitivity and relaxation behaviour, properties which have been displayed in the literature through experimental testing. / Sedan de introducerades i slutet av 1900-talet har litiumjonbatterier blivit den ledande batteriteknologin för portabla enheter samt elfordon på grund av deras höga energidensitet och återladdningförmåga. Den ökade efterfrågan på utökade batterilivslängder är dock hämmad av reduceringen av uppladdningskapacitet över längre användningstider. Denna reducering av laddningskapacitet kommer från elektrokemisk och mekanisk degradering av battericellerna. Det största forskningsintresset i litteraturen har varit på den kemiska degraderingen av battericellerna. Dock ger den mekaniska degraderingen ett betydande bidrag till batteriets kapacitetsdegradering. Därför är det viktigt att förstå battericellens mekaniska egenskaper för att kunna förhindra mekaniskdegradering. Batteriets mekaniska degradering beror på elektrodlagrets beståndsdelar. Denna avhandlings målsättning är att modellera den positiva elektrodens mekaniska egenskaper genom att återskapa dess granulära mikrostruktur med hjälp av diskret elementmetodik. I Artikel 1 och 2 utvecklades ett ramverk för modellering med användning av diskreta elementmetoden, vilket kan återskapa det aktiva lagret för en positiv elektrod, simulera tillverkningsprocesser, samt fastställa elektrodlagrets mekaniska egenskaper. Ramverket använder två kontaktmodeller som representerar det positiva elektrodmaterialet i form av partiklar samt ett bindemedel, som ger elektrodlagret dess strukturella integritet. Ramverket används för att undersöka hur de mekaniska egenskaperna för det hela elektrodlagret beror på egenskaperna för de aktiva partiklarna samt bindemedlet. Ramverket kan fånga lagrets tryckkänslighet samt dess relaxering, egenskaper som har påvisats i litteraturen genom experimentell provning. / <p>Qc240322</p>
223

Анодные материалы на основе оксидов железа для литий-ионных аккумуляторов : магистерская диссертация / Anode materials based on iron oxides for lithium-ion batteries

Кошкина, А. А., Koshkina, A. A. January 2019 (has links)
The master's thesis is devoted to establish optimal parameters produced composites of iron oxide and carbon (FeOx/C) through the physicochemical study of the samples obtained for further use as anode materials of lithium-ion batteries (LIA). This interdisciplinary work was made in the laboratory of chemistry of compounds of rare-earth elements of the The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences as well as with the use of the equipment of the Ural Center for Shared Use «Modern nanotechnologies» of Ural Federal University named after the first President of Russia B. N. Yeltsin. / Магистерская диссертация посвящена установлению оптимальных параметров получения композитов из оксида железа и углерода (FeOx/C) посредством физико-химического исследования полученных образцов для дальнейшего использования в качестве анодных материалов литий-ионных аккумуляторов (ЛИА). Данная работа носит междисциплинарный характер и была выполнена в лаборатории химии соединений редкоземельных элементов ИХТТ УрО РАН, а также с использованием оборудования УЦКП «Современные нанотехнологии» УрФУ им. Б. Н. Ельцина.
224

Assessing Viability of Open-Source Battery Cycling Data for Use in Data-Driven Battery Degradation Models

Ritesh Gautam (17582694) 08 December 2023 (has links)
<p dir="ltr">Lithium-ion batteries are being used increasingly more often to provide power for systems that range all the way from common cell-phones and laptops to advanced electric automotive and aircraft vehicles. However, as is the case for all battery types, lithium-ion batteries are prone to naturally occurring degradation phenomenon that limit their effective use in these systems to a finite amount of time. This degradation is caused by a plethora of variables and conditions including things like environmental conditions, physical stress/strain on the body of the battery cell, and charge/discharge parameters and cycling. Accurately and reliably being able to predict this degradation behavior in battery systems is crucial for any party looking to implement and use battery powered systems. However, due to the complicated non-linear multivariable processes that affect battery degradation, this can be difficult to achieve. Compared to traditional methods of battery degradation prediction and modeling like equivalent circuit models and physics-based electrochemical models, data-driven machine learning tools have been shown to be able to handle predicting and classifying the complex nature of battery degradation without requiring any prior knowledge of the physical systems they are describing.</p><p dir="ltr">One of the most critical steps in developing these data-driven neural network algorithms is data procurement and preprocessing. Without large amounts of high-quality data, no matter how advanced and accurate the architecture is designed, the neural network prediction tool will not be as effective as one trained on high quality, vast quantities of data. This work aims to gather battery degradation data from a wide variety of sources and studies, examine how the data was produced, test the effectiveness of the data in the Interfacial Multiphysics Laboratory’s autoencoder based neural network tool CD-Net, and analyze the results to determine factors that make battery degradation datasets perform better for use in machine learning/deep learning tools. This work also aims to relate this work to other data-driven models by comparing the CD-Net model’s performance with the publicly available BEEP’s (Battery Evaluation and Early Prediction) ElasticNet model. The reported accuracy and prediction models from the CD-Net and ElasticNet tools demonstrate that larger datasets with actively selected training/testing designations and less errors in the data produce much higher quality neural networks that are much more reliable in estimating the state-of-health of lithium-ion battery systems. The results also demonstrate that data-driven models are much less effective when trained using data from multiple different cell chemistries, form factors, and cycling conditions compared to more congruent datasets when attempting to create a generalized prediction model applicable to multiple forms of battery cells and applications.</p>
225

Rheological Modeling And Inkjet Printability Of Electrode Ink Formulation For Miniature And Interdigital Lithium-Ion Batteries

Ajose, Habib Temitope-Adebayo 30 May 2023 (has links)
No description available.
226

Återbruk kontra återvinning av litiumjonbatterier / Second life versus recycling of lithium-ion batteries

Pajtlar, Marija Lucija, Söderlund, Elin January 2023 (has links)
I Sverige läggs stort fokus på omställningen till ett hållbart och klimatneutralt samhälle, där avkarbonisering och elektrifiering av transportsektorn anses avgörande för att minska utsläpp av växthusgaser. En storskalig batteriproduktion i Sverige och i Europa medför nya problem kring hållbarhetsaspekter gällande utvinning av råvara som exempelvis litium, kobolt och nickel. Men även andra problem gällande avfallshanteringen av litiumjonbatterier. Återvinning och återbruk av litiumjonbatterier anses vara en viktig del i strävan mot en cirkulär batteriproduktion. Dock finns svårigheter med implementering av dessa processer på en storskalig marknad gällande ekonomiska, miljömässiga och tekniska aspekter. Syftet med arbetet är att kartlägga för- och nackdelar med återbruk av littiumjonbatterier i kontrast till återvinning av littiumjonbatterier som nått sitt förbruknings- (EoL - End of Life) tillstånd och identifiera viktiga aktörer för marknadsutökning av både återbruk och återvinning av litiumjonbatterier. En litteraturstudie gjordes tillsammans med en intervju med företaget Vattenfall. Genom detta identifierades ekonomiska, tekniska och miljömässiga aspekter gällande återvinning och återbruk av litiumjonbatterier.   Resultatet av rapporten visar att smarta automatiserade dataanalyser (smarta algoritmer som självständigt kan sortera olika typer av batterier, fatta beslut om batteriernas tillstånd och genom användning av sensorer kan mäta och kontrollera temperaturförändringar) krävs för att göra batteriåtervinning och återbruk effektivare, säkrare och mer ekonomiskt lönsamt.  Återbruk av litiumjonbatterier förlänger batteriets livslängd där metaller knyts till batterier under en längre tid och kan hjälpa till att minska flaskhalsproblematiken gällande ohållbar metallutvinning. Återbruk kan vara bättre än återvinning ur miljösynpunkt i exempelvis energilagringsapplikationer kopplade till förnybar energiproduktion. Litiumjonbatteriet står för en stor del av elbilens miljöpåverkan. Återbruk av elbilsbatterier i diverse applikationer kan därför göra att elbilens miljöpåverkan minskar då batteriets miljöpåverkan inte bara knyts till elbilen. Idag anses återvinning mer ekonomiskt lönsam och det finns fler aktörer och ekonomiska incitament för att stärka batteriåtervinning än för batteriåterbruk. / Sweden places a lot of focus on the transition to a sustainable and climate-neutral society, where decarbonisation and electrification of the transport sector are considered crucial to reducing emissions of GHG (greenhouse gas). Large-scale battery production in Sweden and in Europe brings new problems regarding waste management and the demand for raw materials used in the manufacturing of lithium-ion batteries. Recycling and reuse of lithium-ion batteries could be an important part of the effort towards a circular battery production chain. However, there are difficulties in implementing these on a large-scale market when it comes to financial, environmental and technical points of view. The purpose of this report is to map the pros and cons of reusing lithium-ion batteries in contrast to recycling the lithium-ion batteries that have reached their EoL (End of Life) and to identify important actors for both methods. A literature study was made as well as an interview with the company Vattenfall. Through this, economical, technical and environmental aspects regarding recycling and reuse of lithium-ion batteries were identified.  The results of the report show that automated data analysis (smart algorithms that can independently sort different types of batteries) is required to make battery recycling and second-life batteries more efficient, safer and more economically viable. The reuse of lithium-ion batteries has the possibility of extending the battery's lifetime and the metal usage and thereby reducing the bottleneck problem regarding unsustainable metal extraction. Second-life applications of LIBs can be better than recycling from an environmental point of view in, for example, energy storage applications linked to an increase in renewable energy. Reusing electric car batteries in other applications can reduce the electric car's environmental impact from a life cycle perspective. Today, there are more financial incentives to strengthen battery recycling than battery reuse.
227

Litiums livscykel i batterier för eldrivna personbilar : En kartläggning av livscykeln för litium i fordonsbatterier med fokus / Life cycle of lithium in batteries for electric passenger cars : A life cycle mapping of lithium in vehicle batteries with a focus on recycling and recycled lithium

Bajrami, Hannah, Issa, Sebastian January 2023 (has links)
Denna kandidatuppsats undersöker livscykeln för återvunnen litium i elbilsbatterier, med fokus på återvinningsprocessen och dess miljöpåverkan vid olika stadier i dess livscykel. Målet är att få insikt i miljöeffekterna från främst litium, men också andra värdefulla material i elbilsbatterier, samt hur deras utvinning, användning och återvinning påverkas av politiska riktlinjer och regler. Olika tekniker för återvinning av batterimaterial undersöks, såsom pyrometallurgi, hydrometallurgi och direktåtervinning. Dessa jämförs sedan med avseende på miljökonsekvenser, effektivitet och säkerhet. Påverkan av politik och regleringar på batteriåtervinning analyseras, mer specifikt de riktlinjer som ges av Europeiska unionen inom ramen för Green Deal. Resultatet från vår litteraturstudie bekräftades av en intervju med en representant från Northvolt. Litteraturstudierna har bidragit med mycket information då det finns omfattande forskning inom området, men då många av dessa artiklar har liknande perspektiv fanns det brist på mer nyanserade studier. Intervjun med Northvolt gav också värdefulla insikter i hur företag arbetar med att minska miljöpåverkan. Sammanfattnings visar studien på att de vanligaste återvinningsmetoderna medför både positiva och negativa konsekvenser på återvunnet litiums livscykel. Den har också visat på att det finns politiska direktiv som har fått företag att prioritera sitt hållbarhetsfokus. Följaktligen har företag som redan integrerat hållbarhet som grundvärdering en fördel gentemot de konkurrenter som istället behöver anpassa sig till nya riktlinjer och policys. / This bachelor's thesis explores the lifecycle of recycled lithium in electric vehicle (EV) batteries, with a focus on lithium recycling and its environmental impact at different stages of recycled lithium's lifecycle. The objective is to gain insight into the environmental effects of primarily lithium but also other valuable materials in EV batteries as well as how their extraction, usage and recycling is influenced by political guidelines and regulations. The extraction process of lithium is examined, along with its impact. Additionally, various techniques for battery material recycling are investigated, such as pyrometallurgy, hydrometallurgy and direct recycling. These are then compared with each other in terms of environmental consequences, efficiency, and safety. The impact of policies and regulations on battery recycling is analyzed, specifically the guidelines provided by the European Union in the Green Deal. The literature review work was reinforced by an interview with a representative from Northvolt. These reviews have been beneficial due to the extensive research in the field, although a limitation is the lack of diverse perspectives in the articles. The interview with Northvolt provided insights into how companies are working to reduce environmental impact. In conclusion, this thesis shows that the most commonly used extraction methods of lithium have both positive and negative consequences on the life cycle of recycled lithium. Furthermore, findings of this thesis shows that there are political directives which have prompted companies to prioritize their sustainability focus. Consequently, companies that have already integrated sustainability as a core value have a competitive advantage over their counterparts who need to adjust to new guidelines and policies.
228

Electrochemical Storage of Lithium in Silicon - Morphological Analysis from the Atomistic Scale to the Macroscale

Ronneburg, Arne 26 May 2021 (has links)
Die experimentellen Daten können bei Dr. Sebastian Risse, Helmholtz-Zentrum Berlin, eingesehen werden. / Silizium-Elektroden werden aufgrund ihrer um eine Gröÿenordnung höheren Kapazität als mögliches Elektrodenmaterial in Lithium-Ionen-Batterien betrachtet. Diese Kapazität geht jedoch mit einer Volumenausdehnung von bis zu 310 % einher. Dies begünstigt einen schnellen Kapazitätsabfall und ein kontinuierliches Wachstum der SEI-Schicht. Ziel dieser Arbeit ist es daher, die Morphologie-Änderung der Siliziumelektrode während des Lithiierungs-Prozesses besser zu verstehen unter Nutzung von operando-Methoden Im ersten Teil wurde Neutronenreflektometrie (NR) genutzt, um die Morphologie-Änderung auf der Nanometerskala einer Siliziumelektrode zu untersuchen. Das Wachsen/Schrumpfen der lithiierten Zone im Silizium wurde beobachtet. Auf der Oberfläche der Elektrode wächst im delithiierten Zustand eine Grenzschicht, welche die Lithiierung verhindert. Nachdem diese Schicht aufgelöst ist, kann Lithium eingelagert werden. Im zweiten Teil wurde operando Röntgen- Phasenkontrast-Radiographie genutzt. Ein rechteckiges Riss-Gitter wurde dabei im delithiierten Zustand beobachtet, welches sich während der Lithiierung schließt. Dieses Gitter ist entlang der Kristallachsen des Siliziums orientiert. Im nächsten Zyklus entsteht das Gitter am selben Ort wieder, und breitet sich mit steigender Zyklenzahl über die Elektrode aus. Im dritten Teil wurde der Einfluss einer künstlichen Grenzschicht auf die Lithiierung untersucht. Erneut wurde NR genutzt. Die künstliche Schicht verringert das Wachstum der SEI-Schicht, unterdrückt es jedoch nicht komplett. Nach 2 Zyklen ist die Grenzschicht degradiert, und Seitenreaktionen können beobachtet werden. / Silicon electrodes receive great interest as potential electrode material in lithium-based batteries due to their one order of magnitude higher capacity. This is accompanied by a volume expansion of up to 310 %, leading to an accelerated capacity loss of the electrodes. The volume expansion creates mechanical stress, leading to fracturization of the electrode and the continuous growth of the solid-electrolyte-interphase (SEI) layer under the consumption of active material. The aim of this thesis is to investigate the morphological changes of silicon electrodes during lithiation/ delithiation. Especially operando-techniques are well-suited to investigate these morphological changes since they allow us to precisely link structural data and the electrochemical state. The first project uses operando neutron reflectometry (NR) and in-situ electrochemical impedance spectroscopy (EIS) to analyze the morphology change of the silicon surface on the nanometer-scale. The growth and shrinkage of the lithiated layers within the electrode as well as the lithium concentration was determined with this method. An SEI-layer forms on top of the silicon electrode in the delithiated state, which hinders the lithium uptake in the initial part of the subsequent lithiation. The second project analyzes the morphology-change of the electrode on the µm-scale. Here the fracturization of the silicon electrode is investigated by operando X-ray phase-contrast radiography. A rectangular fracturization pattern was observed during the second half of the delithiation, which vanished again during the lithiation. The third project investigates the influence of an artificial coating layer on the lithiation process. Again operando NR was chosen as analysis tool. The artificial coating decreased the formation of the SEI-layer within the first cycles, but did not suppress it completely. However, this layer degraded already in an early stage of cycling, resulting in the occurrence of side reactions afterward.
229

In-Situ Capacity and Resistance Estimation Algorithm Development for Lithium-Ion Batteries Used in Electrified Vehicles

Varia, Adhyarth C. January 2014 (has links)
No description available.
230

Comparative life cycle assessment of different lithium-ion battery chemistries and lead-acid batteries for grid storage application

Yudhistira, Ryutaka January 2021 (has links)
With the rapid increase of renewable energy in the electricity grids, the need for energy storage continues to grow. One of the technologies that are gaining interest for utility-scale energy storage is lithium-ion battery energy storage systems. However, their environmental impact is inevitably put into question against lead-acid battery storage systems. Therefore, this study aims to conduct a comparative life cycle assessment (LCA) to contrast the environmental impact of utilizing lithium-ion batteries and lead-acid batteries for stationary applications, specifically grid storage. The main tools in this study include Microsoft Excel for the life cycle inventory and OpenLCA for life cycle modelling and sensitivity analysis. In this research, a cradle-to-grave LCA for three lithium-ion battery chemistries (i.e. lithium iron phosphate, nickel cobalt manganese, and nickel cobalt aluminium) is conducted. The impact categories are aligned with the Environmental Footprint impact assessment methodology described by the European Commission. The standby grid operation scenario is considered for estimating the environmental impacts, where the batteries would deliver 4,800 kWh of electric energy throughout 20 years. Consequently, the functional unit will be in per kWh energy delivered. The lead-acid battery system has the following environmental impact values (in per kWh energy delivered): 2 kg CO2-eq. for climate change, 33 MJ for fossil resource use, 0.02 mol H+-eq. for acidification, 10-7 disease incidence for particulate emission, and 8x10-4 kg Sb-eq. for minerals resource use. Going back to the lithium-ion batteries systems, for the climate change and fossil resource use impact categories, the best performer is found to be the nickel cobalt aluminium (NCA) lithium-ion battery, with 46% and 45% less impact than lead-acid for the respective categories. On the other hand, the nickel manganese cobalt (NMC) was the best for the acidification and particulate emission impact categories with respective 65% and 51% better performance compared to lead-acid batteries. Finally, for the minerals and metals resource use category, the lithium iron phosphate battery (LFP) is estimated to be the best performer, which is 94% less than lead-acid. To conclude, the life cycle stage determined to have the largest contribution for most of the impact categories was the use stage, which then becomes the subject to a sensitivity analysis. The sensitivity analysis was done by varying the renewable contribution of the electricity grids in the use phase. Overall, the lithium-ion batteries systems have less environmental impact than lead-acid batteries systems, for the observed impact categories. The findings of this thesis can be used as a reference to decide whether to replace lead-acid batteries with lithium-ion batteries for grid energy storage from an environmental impact perspective. / Med den snabba ökningen av förnybar energi i elnäten, fortsätter behovet av energilagring att växa. En av de tekniker som växer intresse för energilagring på nyttan är litiumjon batteriets energilagringssystem. Emellertid, deras miljöpåverkan ifrågasätts oundvikligen mot blysyrabatteri lagringssystem. Därför syftar denna studie till att göra en komparativ livscykelanalys (LCA) för att komparera miljöpåverkan av att använda litiumjonbatterier och blybatterier för stationära applikationer, särskilt för nätlagring. I denna forskning genomfördes en vagga-till-grav-LCA (eller cradle-to-grave i engelska) för tre litiumjonbatterikemi (litium järn fosfat, nickel kobolt mangan, och nickel cobalt aluminium). Effektkategorier anpassades till miljökonsekvensbedömning metoden som beskrivs av Europeiska kommissionen. Det användningsfall scenariot för batterierna var standby läget, där batterierna leverera 4800 kWh elektrisk energi för 20 år. Följaktligen den funktionella unit är i ‘per kWh levererad energi’. Blysyrabatteriet hade följande ungefärliga miljöpåverkansvärden (i per kWh levererad energi): 2 kg CO2-eq. för climate change, 33 MJ för fossil resource use, 0.02 mol H+-eq. för acidification, 10-7 disease incidence för particulate emission, and 8x10-4 kg Sb-eq. för minerals resource use. Tillbaka till litiumjonbatterierna, för climate change och fossil resource use resursanvändnings kategorier, den bäst presterande var litiumjonbatteriet nickel kobolt aluminium (NCA). Det hade 46% och 45% mindre påverkan än blysyrabatteriet för respektive kategori. Å andra sidan, var nickel mangan kobolt (NMC) bäst för acidifcation och particulate emission kategorier. De är 65% och 51% bättre än blysyra för kategorierna. Slutligen, litium järn fosfat batteriet (LFP) är det bäst presterande för resource use of minerals and metals kategoriet, vilket det är 94% mindre än blysyra. Avslutningsvis, det livscykelstadier som var bestämt att ha det största bidraget för de flesta av påverkningskategorierna är användningsstadiet, som sedan blir föremål för en känslighetsanalys. I slutändan, litiumjonbatterierna ha mindre miljöpåverkan än blybatterier i detta projekt, för de observerade slagkategorierna. Resultaten av denna avhandling kan sedan användas som referens för att avgöra om bly-syrabatterier ska ersättas med litiumjonbatterier för energilagring ur ett miljöeffektperspektiv.

Page generated in 0.085 seconds