• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 35
  • 13
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 285
  • 285
  • 285
  • 74
  • 70
  • 58
  • 50
  • 43
  • 37
  • 31
  • 30
  • 30
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Fuzzy-Rule-Based Failure Detection and Early Warning System for Lithium-ion Battery

Wu, Meng 05 September 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lithium-ion battery is one kind of rechargeable battery, and also renewable, sustainable and portable. With the merits of high density, slow loss of charge when spare and no memory effect, lithium-ion battery is widely used in portable electronics and hybrid vehicles. Apart from its advantages, safety is a major concern for Lithium-ion batteries due to devastating incidents with laptop and cell phone batteries. Overcharge and over-discharge are two of the most common electrical abuses a lithium-ion battery suffers. In this thesis, a fuzzy-rule-based system is proposed to detect the over-charge and over-discharge failure in early time. The preliminary results for the failure signatures of overcharged and over-discharged lithium-ion are listed based on the experimental results under both room temperature and high temperature. A fuzzy-rule-based model utilizing these failure signatures is developed and validated. For over-charge case, the abnormal increase of the surface temperature and decrease of the voltage are captured. While for over discharge case, unusual temperature increase during overcharge phases and abnormal current decrease during overcharge phases are obtained. The inference engine for fuzzy-rule-based system is designed based on these failure signatures. An early warning signal will be given by this algorithm before the failure occurs. This failure detection and early warning system is verified to be effective through experimental validation. In the validation test, the proposed methods are successfully implemented in a real-time system for failure detection and early warning. The result of validation is compatible with the design expectation. Finally an accurate failure detection and early warning system is built and tested successfully.
262

Dynamic Modeling and Thermal Characterization of Lithium-Ion Batteries

Alsharif, Khaled I. 01 May 2023 (has links)
No description available.
263

GRAPHENE BASED ANODE MATERIALS FOR LITHIUM-ION BATTERIES

Cheekati, Sree Lakshmi 20 April 2011 (has links)
No description available.
264

Data Driven Microstructural Design of Porous Electrodes

Abhas Deva (11845406) 16 December 2021 (has links)
<div> Porous lithium ion battery (LIB) electrodes are comprised of electrochemically active material particles that store lithium and a surrounding conductive binder, liquid electrolyte, carbon black mixture that facilitates ionic and electronic transport. Typically, lithium diffusivity is several orders of magnitude smaller in the active material as compared to the surrounding electrolyte, making the electrode microstructure a governing factor in determining the balance between its lithium storage capacity and transport rate. Here, the effects of microstructure on the performance of LIBs are systematically analyzed at three length scales - the single particle length scale, the spatially resolved multiple particle length scale, and the porous electrode layer (homogenized) length scale. At the single particle length scale, a thermodynamically consistent variational framework is presented to examine the effects of crystallographic anisotropy, crystallographic texture, grain size, and grain morphology on the LiNi<sub>1/3</sub>Mn<sub>1/3</sub>Co<sub>1/3</sub>O<sub>2</sub> (NMC111) chemistry. The theory was extended to the spatially resolved multiple particle length scale and the porous electrode layer length scale to explain the microstructural origin of experimentally observed instances of apparent phase separation in NMC111. At the electrode length scale, a data driven framework is presented to evaluate the electrochemical performance of a wide range of particle morphologies and battery architectures. Specifically, microstructural characteristics of 53 356 microstructures are assessed, and strategies to optimize electrode design parameters such as active particle morphology, spatial orientation, electrode porosity, and cell thickness are presented.</div><p></p>
265

Study of the Potential of Electrified Powertrains with Dual-Fuel Combustion to Achieve the 2025 Emissions Targets in Heavy-Duty Applications

Martínez Boggio, Santiago Daniel 24 October 2022 (has links)
[ES] El transporte de personas, así como de carga ha evolucionado y crecido tremendamente en los últimos años. El desarrollo tecnológico debió ser adaptado a las diferentes medidas gubernamentales en términos de control de emisiones contaminantes. Desde el acuerdo de Paris en 2015 para mantener el crecimiento de la temperatura global por debajo de 1.5oC, se han impuesto también límites para las emisiones de CO2 por parte de vehículos de carretera. Para el sector del transporte pesado, se han impuesto límites de flota de 15% para 2025 y 30% para 2030 de reducción del CO2 con respecto a 2019. Por lo tanto, esta doble restricción de muy bajos niveles de emisiones contaminantes, así como de gases de efecto invernadero hacen que el sector del transporte este ante un gran desafío tecnológico. En 2022, el transporte de carga tiene un 99% de vehículos propulsados a motor de combustión interna con Diesel como combustible y sin ningún tipo de ayuda eléctrica en el sistema de propulsión. Los límites de emisiones contaminantes como Euro 6 son alcanzados con complejos sistemas de postratamiento que además agregan el consumo de Urea. Trabajos previos en la bibliografía, así como sistemas prototipo han demostrado que es posible alcanzar los objetivos de emisiones contaminantes con métodos avanzados de control de la combustión y así disminuyendo la complejidad del post tratamiento en la salida de gases. Con mayor éxito, el concepto de Reactivity Controlled Combustion Ignition puede alcanzar valores por debajo de Euro 6 con eficiencia similar a la combustión de Diesel. Sin embargo, no soluciona los problemas de emisiones de CO2. Por otro lado, en vehículos de pasajeros fue demostrado con suceso la aplicación de motores eléctricos en el sistema de propulsión para mejorar la eficiencia global del vehículo. El caso extremo son los vehículos puramente electicos donde se alcanza eficiencias por arriba del 70% contra 35% de los vehículos no electrificados. Sin embargo, limitaciones de autonomía, tiempo de carga y la no clara reducción global de la contaminación debido a las emisiones de la energía de la red eléctrica y la contaminación de las baterías de ion-litio hacen que este sistema de propulsión este bajo discusión. Para los vehículos con algún grado de electrificación, las emisiones de gases contaminantes siguen siendo un problema como para el caso no electrificado. Por lo tanto, esta tesis doctoral aborda el problema de emisiones contaminantes, así como de CO2 combinado modos avanzados de combustión con sistemas de propulsión electrificado. La aplicación de estas tecnologías se centra en el sector del transporte de carretera pesado. En particular, un camión de 18 toneladas de carga máxima que originalmente en 2022 equipa un motor seis cilindros de 8 litros con combustión convencional Diesel. El presente trabajo utiliza herramientas experimentales como son medidas en banco motor, así como en carretera para alimentar y validar modelos numéricos de motor, sistema de postratamiento, así como de vehículo. Este último es el punto central del trabajo ya que permite abordar sistemas como el mild hybrid, full hybrid y plug-in hybrid. Calibración de motor experimental dedicada a sistemas de propulsión hibrido es presentada con combustibles sintéticos y/o para llegar a los límites de Euro 7. / [CA] El transport de persones, així com de càrrega ha evolucionat i crescut tremendament en els últims anys. El desenvolupament tecnològic degué ser adaptat a les diferents mesures governamentals en termes de control d'emissions contaminants. Des de l'acord de Paris en 2015 per a mantindre el creixement de la temperatura global per davall de 1.5oC, s'han imposat també límits per a les emissions de CO¿ per part de vehicles de carretera. Per al sector del transport pesat, s'han imposat limites de flota de 15% per a 2025 i 30% per a 2030 de reducció del CO¿ respecte a 2019. Per tant, aquesta doble restricció de molt baixos nivells d'emissions contaminants, així com de gasos d'efecte d'hivernacle fan que el sector del transport aquest davant un gran desafiament tecnològic. En 2022, el transport de càrrega té un 99% de vehicles propulsats a motor de combustió interna amb Dièsel com a combustible i sense cap mena d'ajuda elèctrica en el sistema de propulsió. Els limites d'emissions contaminants com a Euro 6 són aconseguits amb complexos sistemes de posttractament que a més agreguen el consum d'Urea. Treballs previs en la bibliografia, així com sistemes prototip han demostrat que és possible aconseguir els objectius d'emissions contaminants amb mètodes avançats de control de la combustió i així disminuint la complexitat del post tractament en l'eixida de gasos. Amb major èxit, el concepte de Reactivity Controlled Combustion Ignition pot aconseguir valors per davall d'Euro 6 amb eficiència similar a la combustió de Dièsel. No obstant això, no soluciona els problemes d'emissions de CO¿. D'altra banda, en vehicles de passatgers va ser demostrat amb succés l'aplicació de motors elèctrics en el sistema de propulsió per a millorar l'eficiència global del vehicle. El cas extrem són els vehicles purament electicos on s'aconsegueix eficiències per dalt del 70% contra 35% dels vehicles no electrificats. No obstant això, limitacions d'autonomia, temps de càrrega i la no clara reducció global de la contaminació a causa de les emissions de l'energia de la xarxa elèctrica i la contaminació de les bateries d'ió-liti fan que aquest sistema de propulsió aquest baix discussió. Per als vehicles amb algun grau d'electrificació, les emissions de gasos contaminants continuen sent un problema com per al cas no electrificat. Per tant, aquesta tesi doctoral aborda el problema d'emissions contaminants, així com de CO¿ combinat maneres avançades de combustió amb sistemes de propulsió electrificat. L'aplicació d'aquestes tecnologies se centra en el sector del transport de carretera pesat. En particular, un camió de 18 tones de càrrega màxima que originalment en 2022 equipa un motor sis cilindres de 8 litres amb combustió convencional Dièsel. El present treball utilitza eines experimentals com són mesures en banc motor, així com en carretera per a alimentar i validar models numèrics de motor, sistema de posttractament, així com de vehicle. Est ultime és el punt central del treball ja que permet abordar sistemes com el mild hybrid, full *hybrid i plug-in hybrid. Calibratge de motor experimental dedicada a sistemes de propulsió hibride és presentada amb combustibles sintètics i/o per a arribar als límits d'Euro 7. / [EN] The transport of people, as well as cargo, has evolved and grown tremendously over the recent years. Technological development had to be adapted to the different government measures for controlling polluting emissions. Since the Paris agreement in 2015 limits have also been imposed on the CO2 emissions from road vehicles to keep global temperature growth below 1.5oC. For the heavy transport sector, fleet limits of 15% for 2025 and 30% for 2030 CO2 reduction have been introduced with respect to the limits of 2019. Therefore, the current restriction of very low levels of polluting emissions, as well as greenhouse gases, makes the transport sector face a great technological challenge. In 2021, 99% of freight transport was powered by an internal combustion engine with Diesel as fuel and without any type of electrical assistance in the propulsion system. Moreover, polluting emission limits such as the Euro 6 are achieved with complex post-treatment systems that also add to the consumption of Urea. Previous research and prototype systems have shown that it is possible to achieve polluting emission targets with advanced combustion control methods, thus reducing the complexity of post-treatment in the exhaust gas. With greater success, the concept of Reactivity Controlled Combustion Ignition can reach values below the Euro 6 with similar efficiency to Diesel combustion. Unfortunately, it does not solve the CO2 emission problems. On the other hand, in passenger vehicles, the application of electric motors in the propulsion system has been shown to successfully improve the overall efficiency of the vehicle. The extreme case is the purely electric vehicles, where efficiencies above 70% are achieved against 35% of the non-electrified vehicles. However, limitations of vehicle range, charging time, payload reduction and an unclear overall reduction in greenhouse emissions bring this propulsion system under discussion. For vehicles with some degree of electrification, polluting gas emissions continue to be a problem as for the non-electrified case. Therefore, this doctoral Thesis addresses the problem of polluting emissions and CO2 combined with advanced modes of combustion with electrified propulsion systems. The application of these technologies focuses on the heavy road transport sector. In particular, an 18-ton maximum load truck that originally was equipped with an 8-liter six-cylinder engine with conventional Diesel combustion. The present work uses experimental tools such as measurements on the engine bench as well as on the road to feed and validate numerical models of the engine, after-treatment system, and the vehicle. The latter is the central point of the work since it allows addressing systems such as mild hybrid, full hybrid, and plug-in hybrid. Experimental engine calibration dedicated to hybrid propulsion systems is presented with synthetic fuels in order to reach the limits of the Euro 7. / This Doctoral Thesis has been partially supported by the Universitat Politècnica de València through the predoctoral contract of the author (Subprograma 2), which is included within the framework of Programa de Apoyo para la Investigación y Desarrollo (PAID) / Martínez Boggio, SD. (2022). Study of the Potential of Electrified Powertrains with Dual-Fuel Combustion to Achieve the 2025 Emissions Targets in Heavy-Duty Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/188835
266

Improving a Circular Electric Vehicle Battery Value Chain : A Case Study of Sustainable Waste Management of Lithium-Ion Batteries

Sithoumphalath, Sithiphone January 2024 (has links)
This master’s thesis aims to improve the circularity of the electric vehicle (EV) battery value chain, specifically focusing on sustainable waste management of Lithium-Ion Batteries (LIBs) in Europe, particularly Sweden. The research objectives include evaluating and proposing actionable recommendations to enhance circularity, addressing environmental impacts, and supporting the industry’s transition towards a sustainable business model aligned with the new European Union (EU) Battery Regulation, which aims to enhance recycling rates, reduce environmental impact, and secure the recovery of valuable materials. The key research questions addressed are: (1) What initiatives, technologies, or best practices are currently being developed to support circularity and sustainable waste management in the EV battery value chain? (2) How can the circularity of the EV battery value chain be enhanced, particularly in sustainable waste management for LIBs? (3) What environmental impacts, socio-economic opportunities, and challenges exist in a circular value chain in the EV battery industry? The methodology employed a mixed-methods approach, including a literature review and case study, stakeholder interviews, SWOT analysis and life cycle assessment (LCA) using Minviro LCA software to quantify and compare the environmental impacts of state-of-the-art industrial LIB recycling methods. Key findings indicate that several initiatives and technologies are being developed to support circularity, including advanced recycling technologies and second-life applications for batteries. Enhancing circularity requires regulatory support, technological advancements, and stakeholder collaborative efforts. The findings highlight significant potential for extending the lifecycle of EV batteries through re-use, re-purposing, and recycling strategies. The analysis reveals that advancements in recycling technologies and supportive regulatory frameworks can substantially reduce the environmental impact and improve LIB supply chain sustainability. Notably, the LCA results highlight that mechanical and hydrometallurgical recycling processes offer more favourable environmental outcomes than pyrometallurgical methods. Thus, it shows potential for lower environmental impact on greenhouse gas (GHG) emissions and resource depletion, alongside socio-economic opportunities like job creation and economic growth. However, challenges such as technological barriers, economic feasibility, regulatory compliance, and EV battery value chain complexities remain, and these must be addressed. The conclusions drawn from the findings recommend that a combination of regulatory support, technological innovation, and stakeholder collaboration is essential for improving the circularity of the EV battery value chain. The study recommends advancements in recycling technologies, developing efficient testing and certification processes for second-life batteries, and establishing clear regulatory frameworks to facilitate circular economy practices. These measures are crucial for supporting the industry’s shift towards a more sustainable and circular model, ultimately contributing to the EU’s climate neutrality goals by 2050.
267

Synthèse et caractérisation d’oxydes lamellaires riches en lithium et en manganèse obtenus sous la forme de gradients de concentration pour les batteries Li-ion / Synthesis and characterization of lithium and manganese rich layered oxides obtained as concentration-gradients for Li-ion batteries

Pajot, Ségolène 16 December 2016 (has links)
Ce travail présente la mise en oeuvre d’un protocole de synthèse de gradients deconcentration dans les oxydes lamellaires riches en Li et en Mn. Le but a été dedévelopper la formation d’oxydes lamellaires riches en Li et Mn au coeur des agrégatssphériques du matériau actif et, en se rapprochant de la surface, d’enrichir lacomposition de l’oxyde lamellaire en Co et en Ni, afin de combiner une forte densitéd’énergie (apportée par le coeur du gradient) et une excellente stabilité thermique etstructurale (apportée par la surface du gradient). La synthèse a été réalisée en deuxétapes, une co-précipitation pour former un carbonate de métaux de transition suivied’une calcination à haute température pour obtenir le matériau actif lithié. L’influencede différents paramètres (pH, débit d’injection, taille du réacteur, composition, …) surla nature du carbonate à gradient de concentration ainsi formé a été étudiée. De lamême façon, le contrôle du ratio Li/M (ici M = Ni, Co, Mn), de la température et de ladurée de calcination s’est révélé important pour parvenir à maintenir le gradient deconcentration dans le matériau lithié. Le ratio Li/M est également déterminant pourcontrôler la nature des matériaux obtenus (lamellaire - spinelle ou lamellaire –lamellaire). Des caractérisations extrêmement pointues, et complexes à mettre enoeuvre, ont été menées afin d’obtenir des informations pertinentes sur la distributiondes phases au sein des agrégats (composition et structure), de la surface au coeur dugradient : différentes techniques de microscopie (EPMA, MEB-EDX et FIB-STEM) ontainsi été largement utilisées. Les matériaux les plus intéressants ont été étudiés enbatteries Lithium-ion avec une électrode de graphite à la négative, les performancesélectrochimiques et la stabilité thermique à l’état chargé de la batterie sont largementdiscutées par rapport à l’état de l’art et notamment au matériau de coeur riche en Li eten Mn. / This work describes in details the implementation of the synthesis protocol for theformation of Li- and Mn-rich layered oxides with concentration-gradients. The purposewas to develop the synthesis of Li- and Mn-rich layered oxides in the bulk of sphericalaggregates of active material and, moving to the surface, to enrich the layered oxides’composition with Co and Ni, in order to combine a high energy density (provided bythe bulk) and an excellent thermal and structural stability (provided by the surface).The synthesis was performed in two steps, a coprecipitation to form a transition metalcarbonate followed by a calcination at high temperature to obtain the lithiated activematerial. The influence of several parameters (pH, feeding rate, size of the reactor,composition …) on the nature of the carbonates formed with concentration-gradientswas studied. Similarly, the control of the Li/M ratio (with M = Ni, Co, Mn) and of thetemperature and duration of calcination was revealed to be important to maintain theconcentration-gradient in the lithiated materials. The Li/M ratio is also the keyparameter to control the nature of the materials obtained (layered - spinel or layered -layered). Advanced characterizations, complex to be implemented, were performed inorder to obtain in-depth information on the distribution of phases within the aggregates(composition and structure), from the bulk to the surface: complementary microscopytechniques (EPMA, SEM-EDS and FIB-STEM) were widely used. The most interestingmaterials were studied in Lithium-ion batteries with graphite at the negative electrode,their electrochemical performance and the thermal stability in the charged state of thebattery were compared to the state of art, and particularly to the bulk Li and Mn-richlayered oxide.
268

Resilient and Real-time Control for the Optimum Management of Hybrid Energy Storage Systems with Distributed Dynamic Demands

Lashway, Christopher R 26 October 2017 (has links)
A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides the capability to individually monitor and control a wide range of different ES, enabling the extraction of an ES module within a series array to charge or conduct maintenance, while remaining storage can still function to serve a demand. Enhancements and testing of the ESMC are explored in not only interfacing of multiple ES and HESS, but also as a platform to improve management algorithms. There is an imperative need to provide a bridge between the depth of the electrochemical physics of the battery and the power engineering sector, a feat which was accomplished over the course of this work. First, the ESMC was tested on a lead acid battery array to verify its capabilities. Next, physics-based models of lead acid and lithium ion batteries lead to the improvement of both online battery management and established multiple metrics to assess their lifetime, or state of health. Three unique HESS were then tested and evaluated for different applications and purposes. First, a hybrid battery and SC HESS was designed and tested for shipboard power systems. Next, a lithium ion battery and SC HESS was utilized for an electric vehicle application, with the goal to reduce cycling on the battery. Finally, a lead acid battery and flywheel ES HESS was analyzed for how the inclusion of a battery can provide a dramatic improvement in the power quality versus flywheel ES alone.
269

Etude et modélisation de l'interface graphite/électrolyte dans les batteries lithium-ion / Study and establishment of a model of the graphite/electrolyte interface in lithium-ion batteries

Chhor, Sarine 19 December 2014 (has links)
Cette thèse se positionne dans le domaine des batteries lithium-ion. Elle a pourobjectif de mieux comprendre le fonctionnement de l’électrode négative de graphiteen étudiant le processus de formation du film de passivation, couramment appeléSEI (Solid Electrolyte Interface) créé à l’interface avec l’électrolyte. Ce travail nousa conduit à proposer des modèles pouvant expliquer comment se forme la SEI et àidentifier les phénomènes qui entrent en jeu dans le fonctionnement de la batterie.La SEI résulte de la réaction entre l’électrode de graphite, les ions lithium et les moléculesorganiques de l’électrolyte qui survient lors du premier processus d’insertion.Elle est principalement composée des produits de décomposition de l’électrolyte etles ions lithium consommés ne sont plus échangeables. Elle est donc responsable dela capacité irréversible observée lors du premier cycle de formation, correspondantà la différence de capacité entre le processus d’insertion et le processus de désinsertion.Il est donc essentiel de mieux comprendre les paramètres qui l’influencentpour pouvoir ainsi la contrôler et limiter la perte irréversible de capacité. Les performancesen capacité de l’élément lithium-ion sont directement liées à cette valeurde capacité irréversible, elle doit être limitée afin de maximiser la quantité d’ionslithium échangée entre l’électrode négative et l’électrode positive. La stabilité dela SEI conditionne ensuite le comportement en cyclage de l’électrode au cours dutemps.Dans ce mémoire de thèse, nous avons choisi de caractériser le comportement del’électrode de graphite en faisant varier la nature de l’électrolyte et la taille desparticules de graphite tout en restant le plus proche possible du fonctionnementd’une vraie batterie. Au travers des techniques de caractérisations électrochimiques(cyclage galvanostatique, spectroscopie d’impédance) associées à des techniques decaractérisation de surface (spectroscopie de photoélectrons X, microscopie électroniqueà balayage), les résultats obtenus ont permis de proposer un nouveau modèlede formation de la SEI.Pour l’électrolyte, nous avons choisi de ne regarder que l’effet du solvant (le carbonatede propylène) et de l’additif (le carbonate de vinylène). Ces deux composésentrent dans la composition des électrolytes utilisés dans les éléments lithium-ioncommerciaux. Pour l’électrode de graphite, le choix des particules s’avère primordialpuisque chaque type de particules possède une chimie de surface spécifique (plans223basaux ou plans prismatiques) susceptible de réagir différemment vis-à-vis de l’électrolyte.Deux particules de graphite, de taille et de morphologie différentes, ont étéétudiées. Elles sont utilisées séparément en tant que matière active dans les électrodesnégatives des batteries lithium-ion. Notre spécificité est d’avoir préparé desélectrodes constituées par un mélange de ces deux particules et de les avoir ensuitecaractérisées en formation. L’application de conditions de fonctionnement différentescomme le régime de cyclage et la température d’essai ont mis en évidence les valeursidéales conduisant à minimiser la dégradation de l’électrolyte et à optimiser laqualité du film.Nous avons abouti, au travers de l’ensemble des méthodes de caractérisations misesen oeuvre, à une meilleure compréhension des mécanismes de formation du film depassivation permettant ainsi d’améliorer cette étape essentielle à la pérennité desperformances de l’électrode dans le temps. Ce travail a donc un réel impact auniveau industriel. Le modèle de formation proposé apporte un éclairage nouveau auprocessus de formation et peut permettre également d’aider en amont à la fabricationdes particules de graphite. / This work relates to the lithium ion battery field. The purpose of this study is tobetter understand the behavior of graphite electrodes by focusing on the formationof a passive layer named Solid Electolyte Interface (SEI) which is formed at thegraphite/electrolyte interface. This work has led us to put forward models whichcan explain the SEI formation and identify the reactions which take place in alithium ion battery.The SEI results from reactions between graphite electrode, lithium ions and organicmolecules from the electrolyte during the first charge of the lithium ion battery. It ismainly composed of decomposition products from the electrolyte. Consumed lithiumions can no longer be used in the next cycle. The SEI is therefore responsible for theirreversible capacity during the first formation cycle which is the charge loss betweenthe intercalation process and the deintercalation process. It is necessary to betterunderstand the impact of the formation conditions and other parameters in orderto control and limit the irreversible charge loss. Lithium ion battery performancesdepend on this irreversible capacity, this value has to be reduced in order to maximizethe amount of exchanged lithium ions between negative and positive electrodes. TheSEI stability will determine the electrode behavior upon cycling.In this thesis, we chose to study the graphite behavior by testing several electrolytecompositions and graphite particle sizes in electrochemical cells similar to areal battery. Electrochemical techniques (galvanostatic cycling and electrochemicalimpedance spectroscopy) and surface analyses (X-ray photoelectron spectroscopy,scanning electron microscopy) will be combined. These results helped us to developa new model of the SEI formation.For the electrolyte, we chose to study the effect of the solvent (propylene carbonate)and the additive (vinylene carbonate). Both components are commonly used inthe electrolyte for commercial lithium ion batteries. For the graphite electrode, thechoice of graphite particles is essential because each graphite family has its ownsurface chemistry (basal and prismatic surfaces) which can react in many wayswith the electrolyte. Two graphite particles, with specific sizes and morphologiesare studied. They are separately used as active materials for negative electrodes inlithium ion batteries. Our unique approach is to prepare graphite electrodes basedon a mix of both particles with various compositions and then test the electrode225performances. After testing several formation conditions such as the cycling rateand the temperature, we found the ideal formation conditions for minimizing theelectrolyte decomposition and optimizing the film quality.Finally, based on all the characterization methods, we came to a better understandingof the film formation process. In this way, we have improved this essentialpreliminary step which can now lead to more durable cycling performances overtime. This study can have a major impact on the industrial level. The formationmodel cast a new light on the formation process and can therefore help to makeefficient graphite electrodes.
270

High Capacity Porous Electrode Materials of Li-ion Batteries

Penki, Tirupathi Rao January 2014 (has links) (PDF)
Lithium-ion battery is attractive for various applications because of its high energy density. The performance of Li-ion battery is influenced by several properties of the electrode materials such as particle size, surface area, ionic and electronic conductivity, etc. Porosity is another important property of the electrode material, which influences the performance. Pores can allow the electrolyte to creep inside the particles and also facilitate volume expansion/contraction arising from intercalation/deintercalation of Li+ ions. Additionally, the rate capability and cycle-life can be enhanced. The following porous electrode materials are investigated. Poorly crystalline porous -MnO2 is synthesized by hydrothermal route from a neutral aqueous solution of KMnO4 at 180 oC and the reaction time of 24 h. On heating, there is a decrease in BET surface area and also a change in morphology from nanopetals to clusters of nanorods. As prepared MnO2 delivers a high discharge specific capacity of 275 mAh g-1 at a specific current of 40 mA g-1 (C/5 rate). Lithium rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template. It has a well crystalline structure with a broadly distributed mesoporosity but low surface area. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g-1 is obtained at a discharge current of 30 mA g-1. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g-1 at a discharge current density of 30 mA g-1. Solid solutions of Li2MnO3 and LiMO2 (M=Mn, Ni, Co, Fe and their composites) are more attractive positive electrode materials because of its high capacity >200 mAh g-1.The solid solutions are prepared by microemulsion and polymer template route, which results in porous products. All the solid solution samples exhibit high discharge capacities with high rate capability. Porous flower-like α-Fe2O3 nanostructures is synthesized by ethylene glycol mediated iron alkoxide as an intermediate and heated at different temperatures from 300 to 700 oC. The α-Fe2O3 samples possess porosity with high surface area and deliver discharge capacity values of 1063, 1168, 1183, 1152 and 968 mAh g-1 at a specific current of 50 mA g-1 when prepared at 300, 400, 500, 600 and 700 oC, respectively. Partially exfoliated and reduced graphene oxide (PE-RGO) is prepared by thermal exfoliation of graphite oxide (GO) under normal air atmosphere at 200-500 oC. Discharge capacity values of 771, 832, 1074 and 823 mAh g -1 are obtained with current density of 30 mA g-1 at 1st cycle for PE-RGO samples prepared at 200, 300, 400 and 500 oC, respectively. The electrochemical performance improves on increasing of exfoliation temperature, which is attributed to an increase in surface area. The high rate capability is attributed to porous nature of the material. Results of these studies are presented and discussed in the thesis.

Page generated in 0.0746 seconds