• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analys av lönsamhetstrategier för elnätsanslutet batterilager i en kommersiell fastighet : En fallstudie med fokus på effekttoppskapning, låglastutnyttjande och anslutning till balansmarknaden

Lernstål, Ellinor January 2024 (has links)
This master thesis examines the economical profitability of integrating a battery storage system with the commercial property Pyramiden 19. The model is developed in Matlab and analyses three different profitability strategies for utilizing the battery storage: peak shaving, time of use arbritage and the grid supporting service FCR-D up. The modeling of these scenarios involves numerous parameters, with uncertainties surrounding factors such as battery price and characteristics, electricity prices, and the actual activation of grid-supporting services. Results indicate that only minor savings can be modeled through the electricity contracts, leading to both peak shaving and time-of-use arbitrage generating additional costs than previously when factoring in battery investment expenses. Although peak shaving and time of use arbritage are innovating strategies to redistribute consumption with, they are not suitable to reduce costs with all types of electricity contracts and cannot cover largely added investment costs. Looking at the third strategy, the flexibility market appears to hold a significant potential for economical profitability. The model shows that the grid supporting service FCR-D up, with a 2000 kW battery, reduces the initial annual electricity costs by 36%. This can mainly be explained by the fact that, in the model, the battery is activated for only 2% of the total hours in a year, and the fact that the service is compensated based on called bids rather than activated bids. Connection to the balance market would therefore not only generate revenues for the property but would also result in relief for the local electricity grid. Due to the uncertain future regarding compensation levels in the flexibility market, an early connection is recommended to ensure timely reimbursement for the battery.
2

Riskmoment vid släckning av brand i litium-jonbatterier ombord på fartyg / Hazards regarding extinguishing of lithium-ionbattery fires onboard ships

Lif, William, Sehlin, André January 2020 (has links)
Detta arbete söker att svara på vilka risker som måste beaktas vid bekämpningen av en brand i litium-jonbatterier ombord på fartyg. Antalet elbilar med denna typ av batterier ökar i popularitet och transporteras ofta via fartyg. För att få svar på vilka risker som då uppstår och hur de ska beaktas, har en serie semistrukturerade intervjuer genomförts med räddningstjänsten i olika län, samt forskare som har kunskap inom ämnet. Arbetet har visat på att det finns flera olika risker som kan uppkomma med ett litium-jonbatteri, brand och termisk rusning är några av riskerna som kan uppkomma. Vid dessa händelser släpps ett flertal farliga gaser ut där den mest kända är vätefluorid. Andra risker som uppkommer varierar mellan den höga värmen av 1150°C från branden, till det faktum att en sådan brand inte kan kvävas då den förser sig själv med syre vilket gör att den kan fortsätta brinna. Det finns inga tydliga regelverk eller riktlinjer för hur dessa bränder ska bekämpas på bästa sätt och detta kräver ytterligare forskning för att tydliggöra hur brand i litium-jonbatterier skall hanteras. / This study is searching for the answer of what hazards must be considered when fighting fires in lithium-ion batteries on board ships. The number of electric vehicles with this type of battery are increasing in popularity and are often transported through the shipping industry. To highlight the hazards and how to handle them, a couple of semi-structured interviews were conducted with firefighters and researchers with knowledge in the subject. The study has looked at the risks that arise when a lithium-ion battery has a thermal runaway, during which several dangerous gases are emitted where the most known is hydrogen fluoride. Other hazards that arise vary from high heat at points as high as 1150° C, to the fact that such fire cannot be suffocated as it is selfsufficient in oxygen. There are no clear regulations or guidelines on how to fight this kind of fire and further research is required to clarify how to handle these types of fires.
3

Physics-Based Modelling for SEI and Lithium Plating During Calendar and Cycling Ageing / Fysikbaserad model för SEI och litiumplätering under kalender- och cykelåldring

Nordlander, Oskar January 2022 (has links)
Målet med projektet var att undersöka samt implementera en fysikbaserad DFN modell för att simulera kalender samt cyklingåldrande av litiumbatterier som används i elbilar. Den fysikbaserade modellen var konstruerad baserad på ett Python biblioteket vid namn PyBaMM, vilket till skillnad från datadrivna modeller ger essentiell information om de kemiska processerna inuti batteriet. Den första delen av projektet täcker konceptet av kalenderåldring, vilket inkluderar en jämförelse mellan tre olika tre olika hastighetsbegränsande SEI modeller. Parametrar som påverkar det erhållna resultatet från modellen är identifierade, estimerade, och till slut validerade för att säkerhetsställa att modellen och parametrarna är identifierbara gentemot experimentella data. Resultatet av jämförelsen gav att SEI tillväxt begränsad av litium interstitiell diffusion är den mest optimala modellen att applicera när kalenderåldring för litiumbatterier ska modelleras. Resultaten visade också att endast en parameter, inre SEI litium interstitiell diffusivitet ska justeras för att erhålla optimal anpassning mot experimentella data. Andra delen av projektet använde resultatet från den första delen och litium plätering implementerades som en andraåldringsmekanism som undersöktes under tre olika laddningsprotokoll. Modellen var optimerad och anpassad gentemot experimentella data, där parametervärdet för kinetisk hasighetskonstanten för plätering var estimerad. Den optimerade modellen användes därefter för att erhålla mer information om elektrokemiska variabler för att kunna analysera samt beskrivaåldringsprocessen utan att behöva genomföra praktiska laborationer. Resultaten visade att mängden pläterat litium på den negativa elektroden ökade för celler som var exponerade till högre ström under laddningsprocessen, samt när cellerna var laddade vid höga SoC nivåer. Sammanfattningsvis, visade modellen hög potential att representera och evaluera experimentella data, samt tillhandahålla en inblick i elektrokemiska processer och kapacitetsförluster länkade till SEI tillväxt och litium plätering. Däremot, för att erhålla en högre grad noggrannhet av elektrokemiskaåldringsmekanismer i litiumbatterier, fler ytterligare mekanismer måste implementeras såsom mekanisk stress av både negativ och positiv elektrod. / The aim of this study was to investigate and apply a physics-based DFN model to simulate the calendar and cycling ageing of lithium-ion batteries manufactured for EV applications. The physics-based cell ageing model was constructed based on the open-source software Python library PyBaMM, which in comparison to data-driven models provides more essential information about the chemical process within the battery cell. The first part of the project covers the concept of calendar ageing which includes comparisons between three different rate-limiting SEI growth models. Parameters that affect the output from the physics-based model are isolated, estimated with numerical methods, and lastly validated to ensure that the model and the parameters rep- resent the physics behind the experimental data. It was found that the SEI growth limited by lithium interstitial diffusion is the most optimal model to apply for a physics-based model when modeling calendar ageing. It was also found that the only parameter that should be tuned against experimental data is the inner SEI lithium interstitial diffusivity. The second part of the project utilizes the results from the first part and introduces lithium plating as a second cell ageing mechanism under three different charging protocols. The model was optimized and fitted against experimental data by sweeping the lithium plating kinetic rate constant parameter. The optimized model was thereafter used to generate outputs that more thoroughly can explain the degradation effects of the cell without constructing real-world experiments. Where increased rate of plated lithium could be observed for the cell subjected to higher charging C-rate, and when the cells were charged at high SoC levels. To summarize, the model showed great potential in representing and evaluating the experimental data and providing the project with insight into the electrochemical processes and cell capacity losses of SEI growth and lithium plating. However, in order to achieve a higher accuracy of cell ageing model in relation to the lithium-ion cells used in customer vehicles, several additional cell degradation mechanisms have to be introduced, such as mechanical degradation of the two electrodes.
4

Physics-Based Modelling for SEI and Lithium Plating During Calendar and Cycling Ageing / Fysikbaserad model för SEI och litiumplätering under kalender- och cykelåldring

Nordlander, Oskar January 2022 (has links)
Målet med projektet var att undersöka samt implementera en fysikbaserad DFN modell för att simulera kalender samt cyklingåldrande av litiumbatterier som används i elbilar. Den fysikbaserade modellen var konstruerad baserad på ett Python biblioteket vid namn PyBaMM, vilket till skillnad från datadrivna modeller ger essentiell information om de kemiska processerna inuti batteriet. Den första delen av projektet täcker konceptet av kalenderåldring, vilket inkluderar en jämförelse mellan tre olika tre olika hastighetsbegränsande SEI modeller. Parametrar som påverkar det erhållna resultatet från modellen är identifierade, estimerade, och till slut validerade för att säkerhetsställa att modellen och parametrarna är identifierbara gentemot experimentella data. Resultatet av jämförelsen gav att SEI tillväxt begränsad av litium interstitiell diffusion är den mest optimala modellen att applicera när kalenderåldring för litiumbatterier ska modelleras. Resultaten visade också att endast en parameter, inre SEI litium interstitiell diffusivitet ska justeras för att erhålla optimal anpassning mot experimentella data. Andra delen av projektet använde resultatet från den första delen och litium plätering implementerades som en andraåldringsmekanism som undersöktes under tre olika laddningsprotokoll. Modellen var optimerad och anpassad gentemot experimentella data, där parametervärdet för kinetisk hasighetskonstanten för plätering var estimerad. Den optimerade modellen användes därefter för att erhålla mer information om elektrokemiska variabler för att kunna analysera samt beskriva åldringsprocessen utan att behöva genomföra praktiska laborationer. Resultaten visade att mängden pläterat litium på den negativa elektroden ökade för celler som var exponerade till högre ström under laddningsprocessen, samt när cellerna var laddade vid höga SoC nivåer. Sammanfattningsvis, visade modellen hög potential att representera och evaluera experimentella data, samt tillhandahålla en inblick i elektrokemiska processer och kapacitetsförluster länkade till SEI tillväxt och litium plätering. Däremot, för att erhålla en högre grad noggrannhet av elektrokemiska åldringsmekanismer i litiumbatterier, fler ytterligare mekanismer måste implementeras såsom mekanisk stress av både negativ och positiv elektrod. / The aim of this study was to investigate and apply a physics-based DFN model to simulate the calendar and cycling ageing of lithium-ion batteries manufactured for EV applications. The physics-based cell ageing model was constructed based on the open-source software Python library PyBaMM, which in comparison to data-driven models provides more essential information about the chemical process within the battery cell. The first part of the project covers the concept of calendar ageing which includes comparisons between three different rate-limiting SEI growth models. Parameters that affect the output from the physics-based model are isolated, estimated with numerical methods, and lastly validated to ensure that the model and the parameters rep- resent the physics behind the experimental data. It was found that the SEI growth limited by lithium interstitial diffusion is the most optimal model to apply for a physics-based model when modeling calendar ageing. It was also found that the only parameter that should be tuned against experimental data is the inner SEI lithium interstitial diffusivity. The second part of the project utilizes the results from the first part and introduces lithium plating as a second cell ageing mechanism under three different charging protocols. The model was optimized and fitted against experimental data by sweeping the lithium plating kinetic rate constant parameter. The optimized model was thereafter used to generate outputs that more thoroughly can explain the degradation effects of the cell without constructing real-world experiments. Where increased rate of plated lithium could be observed for the cell subjected to higher charging C-rate, and when the cells were charged at high SoC levels. To summarize, the model showed great potential in representing and evaluating the experimental data and providing the project with insight into the electrochemical processes and cell capacity losses of SEI growth and lithium plating. However, in order to achieve a higher accuracy of cell ageing model in relation to the lithium-ion cells used in customer vehicles, several additional cell degradation mechanisms have to be introduced, such as mechanical degradation of the two electrodes.

Page generated in 0.0825 seconds